
DRAFT: Open-source Fuel Cell Simulation
Toolbox (OpenFCST)

-

User and Developer’s Reference Guide

M. Secanell, A. Putz, V. Zingan, M. Bhaiya, M. Moore, P. Dobson, P. Wardlaw, K. Domican
Energy Systems Design Laboratory, University of Alberta, Canada

Created on: June 11, 2012
Last updated: September 1, 2013

2

Contents

1 Introduction 7

1.1 Overview of the program . 7

1.2 About FCST . 8

1.3 License . 9

1.4 Release changes . 9

I User’s Guide 11

2 Installation 13

2.1 Downloading FCST . 13

2.1.1 Users . 13

2.1.2 Developers . 13

2.2 Installing OpenFCST . 13

2.2.1 System requirements . 13

2.2.2 Installation steps . 14

3 Pre-processor 15

3.1 FuelCellShop::Geometry Namespace . 15

3.2 Developing a mesh in Salome . 15

3.2.1 Tutorial . 15

3.2.2 Meshing with Hexotic . 23

3.3 Salome meshing using python scripts . 26

3.3.1 Introduction . 26

3.3.2 Scripting Examples . 27

4 Running FCST 29

4.1 Fuel Cell Analysis Using FCST . 29

4.2 Fuel Cell Parametric Study using FCST . 31

4.2.1 Main Application File . 31

4.2.2 Data Application File . 32

4.2.3 Parameter/Optimization Application File . 43

4.3 Optimization using FCST . 46

4.4 Multi-Objective Optimization using FCST . 51

4.5 DAKOTA Methods . 52

4.6 Fuel Cell Design & Optimization Using FCST . 53

4.6.1 FCST classes that interact with DAKOTA (Developers Only) 53

5 Post-processor 57

3

II Developer’s Reference Guide (Under development) 59

6 Preliminaries 61
6.1 Setting up FCST under KDevelop . 61

6.1.1 Formatting OpenFCST files . 61

7 FCST structure 63
7.1 Directory tree . 63
7.2 Understanding FCST Architecture . 64
7.3 Understanding FCST Applications: The FCST tutorials . 64
7.4 FCST Applications . 64

7.4.1 Data files . 64
7.5 Namespace structure . 64
7.6 Layers Namespace . 67
7.7 Materials Namespace . 67
7.8 Contributing libraries . 67

7.8.1 APPFRAME . 68
7.8.2 COLDAE Interface . 69
7.8.3 Adding a new version of a contribution library to the repository 71

8 Coding Guidelines (DRAFT) 73
8.1 Class and Member Naming Conventions . 73
8.2 Class and Member Document Strings . 74
8.3 Assertations and exception handling . 75

9 Developing Documentation in FCST 77
9.1 Developing the User and Developer’s Reference Guide . 77
9.2 Developing DOxygen documentation . 77

9.2.1 TODO list in HTML documentation . 77
9.2.2 Linking to other functions . 77

10 Development Process 79
10.1 Proposed Development Cycle . 79
10.2 Test Driven Development . 79

10.2.1 Unit Tests . 81
10.2.2 TDD Implementation in the FCST . 81
10.2.3 Implementing a new test suite . 84
10.2.4 Refactoring . 84
10.2.5 Unit Standards . 86

11 Tracking and Ticketing System for FCST 87
11.1 Tracking and Ticketing System Overview . 87
11.2 Using the Ticketing System . 87

12 Daily FCST testing suite: CTest and CDash 89
12.1 Testing your code in your local directory . 89

13 Useful Programming Tips 91
13.1 Memory Leak Detection . 91
13.2 Working with pointers . 91
13.3 Including files to the include files . 91
13.4 Subversion tips . 91

13.4.1 Setting the Id Tag in Subversion . 91

4

13.5 Troubleshooting . 92
13.5.1 Including new virtual functions in already existing classes 92
13.5.2 Corrupted double-linked list error . 93

13.6 Appendix . 96
13.6.1 Example test script . 96

5

6

Chapter 1

Introduction

1.1 Overview of the program

The Fuel Cell Simulation Toolbox (FCST) is an open-source mathematical modelling package for polymer
electrolyte fuel cells. FCST builds on top of the open-source finite element libraries deal.II, therefore many
of its requirements in terms of operating systems and such are the same as for deal.II. FCST is distributed
under the MIT License. FCST has been developed as a modular toolbox from which you can develop your
own applications. It contains a database of physical phenomena equations, fuel cell layers and materials, and
kinetics mathematical models. In addition, it already contains several applications that allow you to simulate
different fuel cell components. For example, you can simulate a cathode electrode (using either a macroho-
mogeneous or an ionomer-filled agglomerate model), an anode electrode or a complete membrane electrode
assembly. The applications already provided in FCST have been validated with respect to experimental data
in the literature [5] as well as numerical results from another model implemented in a commercial package.
A thorough description of the model and the validation is presented in [2].

FCST is being developed at the Energy Systems Design Laboratory at the University of Alberta in
collaboration with the Automotive Fuel Cell Cooperation Corp. that, together with the Natural Science
and Engineering Research Council of Canada has provided the majority of the funding required to developer
this code. The goal of FCST is that research groups in academia and in industry use the current toolbox to
better understand fuel cells and to develop new physics and material databases that can then be integrated
in the current library.

FCST is an integrated open-source tool for fuel cell analysis and design. It seamlessly integrates several
open-source pre-processing, finite element and post-processing tools in order to analyze fuel cell systems.
FCST contains a build-in mesh generator as well as it can import quadrilateral meshes generated with the
open-source pre-processor Salome Salome if your problem requires to simulate more complex geometries. The
physics and material database in FCST allow you to setup the governing equations for the most important
physical processes that take place in a fuel cell. FCST already implements the weak form for many governing
equations that are finally solved using the finite element open-source libraries deal.II. In order to analyze
your results, FCST can output your results to .vtk files that can easily be read with the open-source post-
processor Paraview. FCST is not only an analysis tool. FCST also is also integrated with the design and
optimization package Dakota. Therefore, it can be used for design and optimization as well as parameter
estimation, e.g. reference [2, 3, 4, 5].

FCST is still under development. If you like the library and would like it to continue to be developed
please help the developers in the following ways:

• If you are an industrial researcher that is considering using FCST for research and development in the
company, please consider contacting the developers in order to develop a research program with them.

• If you are either an industrial or academic researcher using the library, please make sure to cite the
FCST libraries in your publications. Please cite any relevant publication by the FCST developers as

7

http://www.dealii.org/
http://secanell-srv01.mece.ualberta.ca/
http://www.afcc-auto.com/
www.nserc-crsng.gc.ca
www.nserc-crsng.gc.ca
http://www.salome-platform.org/
http://www.dealii.org/
http://dakota.sandia.gov/software.html

well as the current reference [1].

• If you are either an industrial or academic researcher using the library and you have developed a new
physics model or material database entry, please consider submitting the class to the developers so
that it can be integrated with the newest version of FCST.

• If you are an industrial researcher that is considering using FCST for research and development in the
company, please consider hiring the graduate students that develop FCST, i.e. the graduate students
from the Energy Systems Design Laboratory at the University of Alberta.

FCST is still under development. Currently, the developers are working on:

• Improving the code readability New classes are being develop to try to make the code more easy to
understand and more modular.

• Developing a convective gas and liquid transport model for the electrodes

• Developing a Navier-Stokes solver for gas transport in the fuel cell channels

• Developing a multi-scale framework for electrode analysis

• Developing a non-isothermal membrane electrode model

1.2 About FCST

FCST was originally conceived by M. Secanell in 2006 while doing his Ph.D. at the University of Victoria
[2]. In 2004, M. Secanell developed a small set of routines that were used to setup the governing equations
for a fuel cell cathode in two-dimensions. The governing equations were first linearized and then the weak
form of the equations was implemented and solved using the deal.II finite element libraries [3]. In 2006, after
attending a deal.II workshop in Heidelberg, Germany, and discussing the idea of creating an open-source
code for fuel cells based on deal.II with Dr. Guido Kanschat and Dr. Wolfgang Bangerth, M. Secanell
decided to integrate the routines he had developed into AppFrame, an application framework developed
by Dr. Guido Kanschat, thereby originating the idea of a toolbox that could be used to create modules or
applications for fuel cell analysis. From 2006 to 2008, FCST development continued with the implementation
of a complete membrane electrode assembly model; however, with M. Secanell as a unique developed the code
was too rough and disorganized to result in an open-source fuel cell package that the research community
could use. In 2009, once M. Secanell joined the University of Alberta, the idea of developing FCST was
solidified. Thanks to the funding provided by the Automotive Fuel Cell Cooperation Corp., MITACS and
the Natural Science and Engineering Research Council of Canada, a group of core developers was established
at the Energy Systems Design Laboratory at the University of Alberta. The current core of developers re-
developed the majority of the classes in order to increase the modularity, usability and reliability of the code.
Currently, FCST is used by 6-8 researchers at two different laboratories, it is tested nightly for errors and it
contains a bug tracking site to report any issues with its performance.

The current group of FCST developers is formed by:

• M. Secanell, Associate Professor, Energy Systems Design Laboratory, University of Alberta, Canada

Responsible for overall framework (base class concepts), optimization interface, electronic, pro-
tonic, membrane water transport, Fick’s gas transport and kinetics

• A. Putz, Senior Research Scientist, Automotive Fuel Cell Cooperation Corp.

Responsible for plug-points and AFCC contributions

• V. Zingan, Post-doctoral Fellow, Energy Systems Design Laboratory, University of Alberta, Canada

Responsible for overall framework (base class concepts), Navier-Stokes, Darcy and multi-component
fluid flow physical models and applications

8

http://secanell-srv01.mece.ualberta.ca/?q=people
http://www.dealii.org/
http://www.afcc-auto.com/
http://www.mitacs.ca/
http://www.nserc-crsng.gc.ca
http://secanell-srv01.mece.ualberta.ca/

• M. Moore, M.Sc. graduate from the Energy Systems Design Laboratory, University of Alberta, Canada

Responsible for fcst install script, double-trap kinetics model for ORR reaction and multi-scale
framework (1D agglomerate models)

• M. Bhaiya, M.Sc. Student, Energy Systems Design Laboratory, University of Alberta, Canada

Responsible for overall framework (base class concepts) and thermal physical models and applica-
tions

• P. Wardlaw, M.Sc. Student, Energy Systems Design Laboratory, University of Alberta, Canada

Responsible for fcst install script and multi-scale framework (1D agglomerate models)

• K. Domican, M.Sc. Student, Energy Systems Design Laboratory, University of Alberta, Canada

Responsible for optimization interface and documentation

Other scientists that have also contributed substantial portions of code to FCST are:

• G. Kanschat, Universitt Heidelberg

Developer of AppFrame (now part of deal.ii as MeshWorker

• P. Dobson, M.Sc. graduate from the Energy Systems Design Laboratory

Developed parts of overall framework (base class concepts), optimization interface and multi-scale
framework (1D agglomerate models)

• Ali Malekpourkoupaei, former M.Sc. graduate student at the Energy Systems Design Laboratory

Developed classes PureGas and classes to compute binary diffusivity (together with M. Secanell)

1.3 License

The Fuel Cell Simulation Toolbox (FCST) is distributed under the MIT License.
Copyright (C) 2013 Energy Systems Design Laboratory, University of Alberta
The MIT License (MIT)
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the ”Software”), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LI-
ABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

1.4 Release changes

• May 18, 2010: Added variable scaling to method section for OPT+ and NL2SOL.In order to do so
I modified optimization blockmatrix application.cc > declare parameters and dakota application.cc
and .h to include a new bool variable and to read it.

• May 19, 2010:

9

– The reference exchange current density is now read in uA/cm2 in order to help optimization/least
squares since Dakota only allows scaling up to 1e-3

– Changes to volume fraction and catalyst layer

– Is epsilon agg modified inside the electrochemical equations?

• July 10, 2010:I moved ”Optimization options section” to dakotadirectinterface (where it belongs). Now,
if you want to run a single run, you have to comment all the information about optimization

10

Part I

User’s Guide

11

Chapter 2

Installation

2.1 Downloading FCST

2.1.1 Users

OpenFCST can be found at the OpenFCST website. In the download section you will be able to find a .tar
file with the latest release. Download the .tar file and download it at an appropriate location.

2.1.2 Developers

The latest version of OpenFCST is hosted in a repository at the University of Alberta. To download the
latest version of FCST type the following on your terminal (you will require a username and password to
download the code):

1 $svn checkout http:// 129.128.14.197/ esdl/fcst/

If you do not have a username and password contact M. Secanell (secanell@ualberta.ca).
If you already have already checkout a version of the code, you can update your local copy by typing the

following on your terminal

1 $svn update

2.2 Installing OpenFCST

2.2.1 System requirements

FCST is developed on Linux and compiled using the GCC compiler. The configure script that FCST uses
relies heavily on the configure script from are the same as those used by deal.II. As deal.II, even though the
FCST developers work on a Linux operating system, the FCST should not be platform specific and we strive
to keep the source code C++ Standard compliant.

FCST developers perform nightly compilation tests on the following OS

• OpenSUSE 12.X

• Fedora 18

These are the operating systems that the FCST developers recommend.
If you would like to try to run the code under a Windows environment, you can try using either the

Cywin or MinGW environments.
The following software needs to also be installed in your computer in order for FCST to compile:

13

http://www.openfcst.org/
http://www.dealii.org/

• GNU make, version 3.78 or later (or any other generator supported by CMake)

• GCC

• BLAS and LAPACK libraries

• MPICH compiler

• For generating the documentation: DOxygen

In addition the following packages might be useful if you are planning on developing new classes for
FCST:

• For debugging programs, we have found that the GNU debugger GDB is an invaluable tool. GDB is
a text-based tool not always easy to use; kdbg, is one of many graphical user interfaces for it.

• Most integrated development environments like kdevelop or Eclipse have built in debuggers as well.

2.2.2 Installation steps

Fuel Cell Simulation Toolbox is a fuel cell simulation package developed using several OpenSource libraries
such as the deal.II libraries, the deal.II Application Framework and Shop, DAKOTA and COLDAE. In
order to run without any difficulties, Fuel Cell needs to compile and link to all these applications which
are provided with the code under the folder /contrib (Please note that each package is distributed under a
different license).

FCST contains a script to compile all packages simultaneously. To compile FCST and all other libraries
use the following:

1 $./ fcst_install --without -Dakota --with -MPI --cores=4

Since Dakota is not included in the openFCST release, we have selected to compile FCST without without
Dakota. We use the default MPI, so we specify the MPI flag without a path. Finally, we select to compile
on four cores to speed up the compilation process.

The install script assumes the default path for the MPICH compiler and that all the libraries are in
./contrib. If you already have a version of deal.II and you would like to use that version, use the flags
–with-deal. For more information on the script options type

1 $./ fcst_install --help

14

Chapter 3

Pre-processor

In order to generate a fuel cell domain using FCST two options are available:

• Use the classes under FuelCell::Geometry namespace

• Read in a mesh generated using an open source mesh generator such as Salome

3.1 FuelCellShop::Geometry Namespace

Namespace FuelCellShop::Geometry contains classes to generate a cathode and anode fuel cell electrode,
an spherical agglomerate; and, a membrane electrode assembly with five or seven layers (i.e., with and
without micro porous layer). To use these classes, you simply need to create an object of the class. Then,
use the declare parameters member function to define the variables required in the input file, initialize the
object calling initialize and generate the grid using generate grid. For example,

1 // Create object
2 FuelCellShop :: Geometry ::PemfcMPL <dim > grid;
3 // Declare the necessary variables in the ParameterHandler deal.ii object
4 grid.declare_parameters(param);
5 //Once the ParameterHandler object has been initialized by reading from file ,
6 // initialize the geometry varialbes
7 grid.initialize(param);
8 // Generate the mesh and store it in the dealii :: Triangularization variable tr
9 grid.generate_grid (*this ->tr);

3.2 Developing a mesh in Salome

SALOME is an open-source software that provides a generic platform for pre-Processing. SALOME is
a cross-platform solution that is distributed as open-source software under the terms of the GNU LGPL
license. You might download both the source code and executable files from the Salome site.

3.2.1 Tutorial

This short tutorial demonstrates how to create a simple mesh in Salome, define material and boundary
indicators, and adapt all of this to the needs of the deal.II library.

The object we would like to mesh is represented by a two dimensional H-shaped domain as shown on
Figure 3.1.

deal.II only works with meshes composed of either quadrilaterals in 2D or hexahedral in 3D. The current
version of Salome is only able to produce these type of meshes with geometries that have outer boundary
composed exactly of 4 pieces in 2D, e.g. see Figure 3.2, and 6 pieces in 3D, e.g see Figure 3.3. In order to

15

http://www.salome-platform.org/

Figure 3.1: H-shaped domain.

Figure 3.2: Linear quadrilateral.

increase the quadrilateral and hexahedral properties of Salome however, a commercial package is available
called Hexotic distributed by Distine (For more information, please visit the following site)

The two dimensional H-shaped domain shown on Figure 3.1 has 12 pieces of the outer boundary and
hence can not be meshed in Salome directly by means of quadrilaterals. If Hexotic is not available, then we
can mesh the domain by splitting it into 3 parts such that each of these parts would have 4 fragments of the
outer boundary. Then we mesh each of these parts and combine them into the H-shaped domain.

Let us do that step by step:

• Run Salome, File → New, and click on the Geometry button on the upper toolbox. We are now
in the Geometry module of Salome, and the first thing we need to do is to define 12 main 2D points
of the object: 1(-1, -1), 2(-0.5, -1), 3(-0.5, 1), 4(-1, 1), 5(-0.5, -0.5), 6(0.5, -0.5), 7(0.5, 0.5), 8(-0.5,

Figure 3.3: Quarter of cylindrical shell.

16

http://www-roc.inria.fr/gamma/gamma/Membres/CIPD/Loic.Marechal/Research/Hexotic.html

0.5), 9(0.5, -1), 10(1, -1), 11(1, 1), 12(0.5, 1). To create any of these points, we go to New Entity
→ Basic → Point, specify the respective fields X:, Y:, and Z:, and push Apply and Close button.
Note that instead of New Entity → Basic → Point we can simpler choose Create a point on the
upper toolbox.

Figure 3.4: How to create a point.

After initializing all the points declared above, we have the following picture:

Figure 3.5: All points.

• At the next step we create 3 quadrangle faces. Each of these faces consists of 4 point: 1(1, 2, 3, 4),
2(5, 6, 7, 8), 3(9, 10, 11, 12). To create a quadrangle face, we go to New Entity → Blocks →
Quadrangle Face, fill out the fields Vertex 1, Vertex 2, Vertex 3, and Vertex 4 with the points
from above, and push Apply and Close button:

17

Figure 3.6: How to create a quadrangle face.

It is what we have when all the quadrangle faces have been created:

18

Figure 3.7: All quadrangle faces.

• At this point we have done with the Geometry module of Salome, and switch our attention to the Mesh
module just by clicking the Mesh button on the upper toolbox. To create an appropriate mesh on each
of the quadrangle faces, we go to Mesh → Create Mesh, where we pass the respective quadrangle
face to the Geometry field. Once that is done, we choose Quadrangle (Mapping) from drop-down
menu of the Algorithm field:

Figure 3.8

After that we click 1D tab and check that Algorithm is set up to Wire discretization. The number
of 1D hypotheses is available here. We choose the one which called Local Length and set up the
parameters of this hypothesis as follows:

After clicking OK the name of Hypothesis field should change to Local Length 1. Then Apply
and Close, mouse right click on the Mesh 1 and Compute:

19

Figure 3.9

Figure 3.10

After applying this strategy to all the quadrangle faces we have something like this:

• Let us now assign meterial ids to all the cells we have created. For instance, all the cells of Mesh 1
have material id = 1, those belong to Mesh 2 - material id = 2, and the cells from Mesh 3 are supposed
to have material id = 3. For instance, mouse right click on the Mesh 1, then choose Create Group.
On this dialog box we set the following parameters:

20

Figure 3.11

Figure 3.12

Hint: To add the cells to the Id Elements field, push and hold the Shift button on your keyboard and
choose the cells by clicking the mouse left button. After all the desired cells have been highlighted,
click add in the Create Group dialog window.

• Absolutely the same technique is used when we define the boundary ids. The only thing we should
remember that the internal edges of the future compound mesh are not allowed to have the boundary
ids. This restriction comes from deal.II limitations. As an example see the picture bellow:

• Finally, we create a compound mesh by simply merging all previously created meshes: Mesh→ Build
Compound:

21

Figure 3.13

Figure 3.14

It is what we eventually have:

If you closely look at the picture above, you will see that some of the internal edges of the compound
mesh still have the numbering. However, it is also strictly prohibited by the deal.II architecture !

• Therefore, the last step before exporting to the UNV format and deal.II library, is to manually remove
all these internal numbers: Modification → Remove → Elements:

22

Figure 3.15

Figure 3.16

• The last step is Ctrl+U or File → Export → UNV File. Once we export the whole mesh into an
UNV file, we can use it for the computational purposes (see the respective FCST tutorial).

3.2.2 Meshing with Hexotic

Hexotic is a fully automatic hexahedral mesh generator. It allows one to generate 3D meshes of complex
geometries, without it we would be unable to meshes many things. Hexotic is a commercial piece of software,
so users must activate it with a correct license key before they may use it - contact support@distine.com
for more information. From experience it is often also necessary to use a proprietary 2D meshing algorithm
from distine know as BLSURF.

23

Figure 3.17

To mesh using Hexotic enter Salome’s meshing view. Select the 3d geometry you wish to mesh. From the
drop down menu “Mesh” select “Create Mesh”. From the 3D menu select Hexotic. Hexotic parameters may
be changed by editing the algorithm’s hypothesis. From the 2D menu select BLSURF. Notable parameters
for the BLSURF algorithm that one may wish to edit in order to achieve a better fitting mesh are the Min
and Max “Physical Size“ parameters.

24

Figure 3.18: Meshing Dialogue Interface

Figure 3.19: Mesh produced using Hexotic and BLSURF

25

Figure 3.20: The same object as before, meshed using an inferior 2D algorithm.

3.3 Salome meshing using python scripts

3.3.1 Introduction

The previous section discussed meshing in Salome using the graphical user interface (GUI). This section will
focus on creating and running scripts to create meshes and geometries. Reasons for using scripts instead
of the GUI are as follows; improved repeatability of results, significant time saving due to automation, and
removal of human error. Several Python scripts are included in the pre processing folder, they can be used
to create various meshes of various geometries.

Meshing scripts are run through Salomes text user interface (TUI). Loading scripts can be done simply
via the file drop down menu, load script. Meshing scripts are written in the Python programming language.
Python is a very popular general purpose high level programming language. Unlike C++, Python code is
not precompiled, but interpreted at run time by a Python interpreter. Some key features that make Python
popular are it’s simple yet elegant syntax, dynamic typing, automatic memory management, and large
selection of freely available libraries. If you are interested in learning the Python programming language,
Phil recommends Dive Into Python.

26

http://www.diveintopython.net/

3.3.2 Scripting Examples

1 import smesh , geompy , SMESH
2 import SALOMEDS

The above lines import the necessary Salome packages that will be required to create geometries and
meshes. smesh is used for create python mesh objects, geompy is used for creating geometries. The other
two packages contain constant flags. For more detail please see the following resources:

1. smesh functions

2. geompy documentation

3. Salome TUI documentation

The following simple example shows how to use geompy to create a simple geometry, and then mesh it
using smesh.

1 def makeRectanglarMesh (s e l f , width , he ight) :
2
3 #Create vertices to describe rectangle

4 Vertex 1 = geompy . MakeVertex (dL i s t [0] , dL i s t [1] , dL i s t [2])
5 Vertex 2 = geompy . MakeVertex (dL i s t [0] + width , dL i s t [1] , dL i s t [2])
6 Vertex 3 = geompy . MakeVertex (dL i s t [0] + width , dL i s t [1] + height , dL i s t [2])
7 Vertex 4 = geompy . MakeVertex (dL i s t [0] , dL i s t [1] + height , dL i s t [2])
8
9 #Make rectangle geometries

10 r e c t = geompy . MakeQuad4Vertices (Vertex 1 , Vertex 2 , Vertex 3 , Vertex 4)
11
12 #Create mesh object of rectangular geomtery

13 Mesh 1 = smesh .Mesh(r e c t)
14
15 #Set 1D meshing algorithm

16 Regular 1D = Mesh 1 . Segment ()
17 Loca l Length 1 = Regular 1D . LocalLength (s e l f . meshDensity)
18 Loca l Length 1 . S e tP r e c i s i on (1e−07)
19
20 #Set 2D meshing algorithm

21 Mesh 1 . Quadrangle ()
22
23 #Compute and return

24 Mesh 1 . Compute ()
25 return Mesh 1

The following is an example of modifying meshes, and using mesh filters.

1 def de l In t e rna lEdge s (s e l f) :
2 ’This function deletes internal edges from self.compoundMesh ’

3
4 #Create a search filter to find free borders of the mesh

5 s e a r c h f i l t e r = smesh . GetF i l t e r (smesh .EDGE, smesh . FT FreeBorders)
6 ex t e rna l edg e s = s e l f . compoundMesh . GetIdsFromFilter (s e a r c h f i l t e r)
7
8 #Get a list of all edges

9 a l l e d g e s = s e l f . compoundMesh . GetElementsByType (SMESH.EDGE)
10
11 edges to remove = []
12
13 #The difference between the external_edges list and all_edges list will be the internal

edges.

14 #The following loop iterates through the all_edges list , comparing it wil the

external_edges list.

15
16 for b in a l l e d g e s :

27

http://docs.salome-platform.org/salome_6_5_0/gui/SMESH/smeshpy_doc/smesh_8py.html
http://docs.salome-platform.org/salome_6_5_0/gui/GEOM/tui_basic_geom_objs_page.html
http://docs.salome-platform.org/salome_6_5_0/gui/SMESH/smeshpy_interface_page.html

17 if b in ex t e rna l edg e s :
18 pass

19 else :
20 #The edge is internal , add it to the list of items to be removed from the mesh

21 edge to remove . append (b)
22
23 print "Removing internal edges:"

24 print edges to remove
25
26 #Remove the edges from the mesh

27 s e l f . compoundMesh . RemoveElements (edges to remove)

When developing a new Python function for generating a geometry or mesh in Salome one may obtain a
rough solution by:

1. Open the Salome GUI

2. Perform the necessary steps using the GUI to generate desire geometries and/or surfaces

3. Use the ”Dump Study“ facility, accessed from the File menu, this will produce a bulky but complete
python program for the previously performed steps

4. Refine the script to the desired form

This is a very good method for obtaining an initial coding solution, or examples of correct code syntax
and usage.

28

Chapter 4

Running FCST

4.1 Fuel Cell Analysis Using FCST

Analysis in FCST is the evaluation of a single data point on the polarization curve, it is usually carried out
when quick evaluations are required. There are two files required when carrying out an analysis.

1. main app param file.prm

2. data app ****.prm

As this section is focused on how to run a simulation the details of these files will be further discussed in
section 4.2. For now it is sufficient to know that main app param file is used to select the application you want
to run (cathode, MEA ...) and the data app file is used to hold all the parameters that describe the fuel
cells physical properties (Porosity, Platinum & Nafion Loading, ...), dimensions, and operating conditions
(Relative Humidity, Temperature, ...).

In order to run an analysis using FCST we need to open a terminal window on the desktop. Once this has
been done we then need to navigate to the file that holds the main app param & data app files of interest.
In our example below we will run a simple MEA analysis. To do this we must go to the mea folder which is
found in FCST’s data folder. An illustration of this can be see below in image 4.1.

1 $˜/ f c s t /data/mea/ ana l y s i s />

Figure 4.1: Terminal Window accessing MEA Analysis Model

Once the user has located the file of interest he/she is then required to “drill back” (../../) to the
executable file (fuel cell-2d.bin) located in the lib folder. An example of this can be seen in figure 4.2.
Then finally hitting enter to run the code.

1 $˜/ f c s t /data/mea/ ana ly s i s> . . / . . / . . / l i b / f u e l c e l l −2d . bin main app pemfc . prm

29

Figure 4.2: Terminal Window Drilling back to the executable file

In the above case as we are running the program in the /fcst/data/mea/analysis; therefore all the
results will be outputted there.

FCST has several applications (See structure of the code below for details). By default, FCST solves
the model of a fuel cell cathode (for the details on the model see M. Secanell et al., Electrochimical Acta,
52(7):2668-2682, February 2007). Sample input files to run this application are in /data/cathode.

Figure 4.3 illustrates the individual steps during a fuel cell analysis. This will be used as a building block
later when looking at optimization in FCST.

Figure 4.3: Schematic of Fuel Cell Analysis Code

30

4.2 Fuel Cell Parametric Study using FCST

When running a parametric study the user requires three files.

1. main app param file.prm

2. data app pemfc.prm

3. opt app parametric default.prm

4.2.1 Main Application File

1. main app param file.prm

The main app param file.prm is the initial file accessed by FCST. Its purpose is to:

(a) Assign the application (line 2) being run. In this case, MEA (Note: This application corresponds
to the application implemented in ./fcst/source/app pemfc.cc and ./fcst/include/app pemfc.h).

(b) Informs FCST on the files to access for data & optimization/parametric information (line 3 & 4).

(c) Assign the type of solver to use (line 5). In this case, a 3 point parabolic Newton method.

(d) And lastly a Boolean command which tells FCST whether we are utilizing DAKOTA (line 6).

1 subse c t i on Simulator
2 s e t s imu la to r name = MEA
3 s e t s imu la to r parameter f i l e name = data app pemfc . prm
4 s e t opt imiza t i on parameter f i l e name = opt app pa ramet r i c de f au l t . prm
5 s e t s o l v e r name = Newton3ppC
6 s e t Dakota d i r e c t = true

7 end

The Application / Simulator Name: The application is the simulation that the user would like
to run.

For example, if the user wants to run the cathode side of the fuel cell to test or observe recent changes
and their effects, the user might run a cathode model. However if the user is looking to run the entire
fuel cell (MEA), they would select (MEA) as seen above in line 2. A list of other application options
can be found in simulation selector.cc.

1 cathode | MEA | tes t mesh | l a p l a c e | . . .

Solver Name: The solver name tells FCST the type of solver that will be used to carry out the
evaluation. These solvers are inherited from APPFRAME found in the contrib folder. In our case we
have specified Newton3ppC which is also the default solver, it uses a three point parabolic function in
order to determines step size for the next evaluation point. For a list of additional solvers utilized by
FCST see simulation selector.cc.

1 Linear | NewtonBasic | Newton3ppC | Newton3pp | NewtonLineSearch

Dakota direct: When running a simple analysis case we will set this to false and FCST will carry
out one evaluation run. If on the other hand we are running an optimization or in our case a parametric
study which has multiple point evaluations, therefore “Dakota direct” will be set to true.

4.2.2 Data Application File

2. data app pemfc.prm

The data app pemfc.prm is a text file which is read by FCST in order to obtain the operating conditions
and physical properties of the catalyst layer such as, Platinum & Nafion loading, porosity, and fuel cell
dimensions. It also posses some instructions on the grid generation, adaptive refinement and how the
output data should be formatted.

Note: The example below has been included to give the reader an idea of the structure of a typical
data file, and some of the information contained.

1 ##
2 # $Id : $
3 #

4 # This f i l e i s used to s imulate a PEM e l e c t r od e with
5 # an agglomerate c a t a l y s t l a y e r s t r u c tu r e .
6 #

7 # Copyright (C) 2008−13 , Marc Secane l l , Peter Dobson and Kailyn Domican
8 #

9 ##
10
11 subse c t i on Grid gene ra t i on
12
13 s e t Type o f mesh = PemfcMPL
14
15 s e t I n i t i a l r e f inement = 2
16 s e t Refinement = adapt ive #g l oba l | adapt ive
17 s e t Sort Cuth i l l−McKee = false

18 s e t Sort by component = true

19
20 ###
21 subse c t i on I n t e r na l mesh genera tor parameters
22 ####
23 subse c t i on Dimensions
24 s e t Cathode cur rent c o l l e c t o r width [cm] = 0 .1 #[cm]
25 s e t Cathode channel width [cm] = 0 .1 #[cm]
26 s e t Cathode CL th i ckne s s [cm] = 1 .0 e−3 #[cm]
27 s e t Cathode MPL th i ckne s s [cm] = 5 .0 e−3 #[cm]
28 s e t Cathode GDL th i ckne s s [cm] = 2 .5 e−2 #[cm]
29 s e t Membrane th i ckne s s [cm] = 0.25 e−2 #[cm] #NRE211
30 s e t Anode CL th i ckne s s [cm] = 0.333 e−3 #[cm]
31 s e t Anode MPL th i ckne s s [cm] = 5 .0 e−3 #[cm]
32 s e t Anode GDL th i ckne s s [cm] = 2 .5 e−2 #[cm]
33 s e t Anode cur rent c o l l e c t o r width [cm] = 0 .1 #[cm]
34 s e t Anode channel width [cm] = 0 .1 #[cm]
35 end
36 ####
37 subse c t i on Mater ia l ID
38 s e t Cathode GDL = 2
39 s e t Cathode MPL = 3
40 s e t Cathode CL = 4
41 s e t Membrane = 5
42 s e t Anode CL = 6
43 s e t Anode MPL = 7
44 s e t Anode GDL = 8
45 end
46 ####

32

47 subse c t i on Boundary ID
48 s e t c Ch/GDL = 2
49 s e t c BPP/GDL = 1
50 s e t c GDL/CL = 255
51 s e t c GDL/MPL = 255
52 s e t c MPL/CL = 255
53 s e t c CL/Membrane = 255
54 s e t Membrane/a CL = 255
55 s e t a CL/GDL = 255
56 s e t a CL/MPL = 255
57 s e t a MPL/GDL = 255
58 s e t a GDL/BPP = 3
59 s e t a GDL/Ch = 4
60 end
61 end
62 end
63
64 ###############
65 subse c t i on Adaptive re f inement
66 s e t Number o f Refinements = 3 # (default)
67 s e t Output i n i t i a l s o l u t i o n = true # (default) false

68 s e t Output in t e rmed ia t e s o l u t i o n s = true # (default) true

69 s e t Output in t e rmed ia t e r e sponse s = true # (default) true

70 s e t Output f i n a l s o l u t i o n = true # (default) true

71 s e t Output s o l u t i o n for t r a n s f e r = true # (default) false

72 s e t Read in i n i t i a l s o l u t i o n from f i l e = true # (default) true

73 end
74
75 ##
76 ##
77 subse c t i on System management
78
79 s e t Number o f s o l u t i o n v a r i a b l e s = 5
80
81 subse c t i on So lu t i on v a r i a b l e s
82 s e t So lu t i on va r i ab l e 1 = oxygen mo la r f r a c t i on
83 s e t So lu t i on va r i ab l e 2 = wat e r mo l a r f r a c t i on
84 s e t So lu t i on va r i ab l e 3 = p r o t o n i c e l e c t r i c a l p o t e n t i a l
85 s e t So lu t i on va r i ab l e 4 = e l e c t r o n i c e l e c t r i c a l p o t e n t i a l
86 s e t So lu t i on va r i ab l e 5 = membrane water content
87 end
88
89 subse c t i on Equations
90 s e t Equation 1 = Ficks Transport Equation − oxygen
91 s e t Equation 2 = Ficks Transport Equation − water
92 s e t Equation 3 = Proton Transport Equation
93 s e t Equation 4 = Elect ron Transport Equation
94 s e t Equation 5 = Membrane Water Content Transport Equation
95 end
96
97 end
98 ##
99 ##

100 subse c t i on D i s c r e t i z a t i o n
101 s e t Element = FESystem [FE Q(2) ˆ5] #System of 5 f e
102 s e t Boundary f l u x e s = false

103 s e t I n t e r i o r f l u x e s = false

104
105 subse c t i on Matrix
106 s e t Quadrature c e l l = −1
107 s e t Quadrature f a c e = −1
108 end
109
110 subse c t i on Res idual
111 s e t Quadrature c e l l = −1

33

112 s e t Quadrature bdry = −1
113 s e t Quadrature f a c e = −1
114 end
115 end
116 ##
117 ##
118
119 ###############
120 subse c t i on Newton
121 s e t Debug r e s i d u a l = false

122 s e t Debug s o l u t i o n = false

123 s e t Debug update = false

124 s e t Max s t ep s = 100
125 s e t Reduction = 1 . e−12
126 s e t Tolerance = 1 . e−9
127 end
128
129 ###############
130 subse c t i on Fuel c e l l data
131
132 ##
133 subse c t i on Operating cond i t i on s
134 s e t Temperature c e l l = 353 # [K] #
135 s e t Cathode pr e s su r e = 101325 # [Pa] # 101325 (1 . 0 atm) |
136 s e t Cathode r e l a t i v e humidity = 0 .7 # [%] #
137 s e t Anode pr e s su r e = 101325 # [Pa] # 101325 (1 . 0 atm) |
138 s e t Anode r e l a t i v e humidity = 0 .7 # [%] #
139 s e t Voltage c e l l = 0 .6 # [V] #
140 end
141 ##
142
143 ##
144 subse c t i on Cathode gas d i f f u s i o n l ay e r
145
146 s e t Mater ia l id = 2
147 s e t Gas d i f f u s i o n l ay e r type = DesignFibrousGDL # DummyGDL | SGL24BA
148
149 subse c t i on DesignFibrousGDL # DummyGDL | SGL24BA
150 ######### Composition : #########
151 s e t Poros i ty = 0 .6
152 ######### Gas t ranspor t #########
153 ## Anisotropy
154 s e t An i so t rop i c t ranspo r t = true # (default) false

155 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in pores = Tomadakis # (default)
Bruggemann | Given | Perco l a t i on | Tomadakis | Mezedur

156 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in s o l i d = Perco l a t i on # (default)
Bruggemann | Given | Perco l a t i on

157 ## XX
158 s e t Poros i ty th r e sho ld X = 0.11 # (default) 0 .12 | 0 .118 (Peter s Thes i s) |

0 .11
159 s e t Poros i ty network constant X = 0.785 # (default) 2 . 0 |0 . 7 8 5 (Peter s

Thes i s) [Page 69]
160 s e t Poros i ty gamma network constant X = 0 .0 # (default) 0 . 0 |
161 #
162 s e t E l e c t r i c a l conduc t i v i t y X = 16.03 # [S/cm]
163 s e t So l i d network th r e sho ld X = 0.0 # (default) 0 .12 |
164 s e t So l i d network constant X = 1.5 # (default) 2 . 0 |
165 ## YY
166 s e t Poros i ty th r e sho ld Y = 0.11 # (default) 0 .12 | 0 .118 (Peter s Thes i s) |

0 .11
167 s e t Poros i ty network constant Y = 0.521 # (default) 2 . 0 |
168 s e t Poros i ty gamma network constant Y = 0 .0 # (default) 0 . 0 |
169 #
170 s e t E l e c t r i c a l conduc t i v i t y Y = 272.78 # [S/cm]
171 s e t So l i d network th r e sho ld Y = 0.0 # (default) 0 .12 |

34

172 s e t So l i d network constant Y = 1.0 # (default) 2 . 0 |
173 end
174 end
175 ##
176 subse c t i on Cathode microporous l ay e r
177 s e t Mater ia l id = 3
178 s e t Micro porous l ay e r type = DesignMPL # (default) SGL24BC | DesignMPL
179 subse c t i on DesignMPL
180 s e t Poros i ty = 0 .4 # From exper imenta l data (manufacturers data) on

S i g r a c e l 24BC
181 s e t An i so t rop i c t ranspo r t = false

182 ######### Pore network #########
183 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in pores = Perco l a t i on
184 s e t Poros i ty th r e sho ld = 0.118
185 s e t Poros i ty network constant = 2 .0
186 ######### So l i d network #########
187 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in s o l i d phase = Perco l a t i on
188 s e t E l e c t r i c conduc t i v i ty = 88.84 # From exper imenta l data (manufacturers

data) on S i g r a c e l 24BC
189 s e t So l i d network th r e sho ld = 0.118
190 s e t So l i d network constant = 2 .0
191 end
192 end
193
194 ##
195 subse c t i on Cathode c a t a l y s t l a y e r
196
197 s e t Mater ia l id = 4
198 s e t Cata lys t l a y e r type =

HomogeneousCL #[DummyCL | AgglomerateCL | HomogeneousCL]
199
200 s e t Cata lys t type = Platinum
201 s e t Cata lys t support type = Carbon Black
202 s e t E l e c t r o l y t e type = Nafion
203 s e t K ine t i c s type =

Ta f e lK in e t i c s
204
205 ##################
206 subse c t i on Mate r i a l s
207 ##
208 subse c t i on Nafion
209 s e t Henrys Law Constant for Oxygen [Pa cmˆ3/mol] = 3.1664 e10
210 s e t Henrys Law Constant for Hydrogen [Pa cmˆ3/mol] = 6 .69 e10
211 s e t Method to compute proton conduc t i v i ty = NRE211
212 s e t Method to compute water d i f f u s i o n = Motupally
213 s e t Electro−osmotic drag method = Constant
214 s e t Electro−osmotic drag c o e f f i c i e n t = 1 .0
215 s e t Method for s o rp t i on isotherm = Hinatsu
216 s e t Method to compute enthalpy o f s o rp t i on o f water = Constant
217 s e t Enthalpy o f s o rp t i on o f water [J/mol] = 45000.0
218 s e t Oxygen d i f f u s i o n c o e f f i c i e n t [cmˆ2/ s] = 9.726 e−6 # 9.726 e−6 (

Peter s Thes i s)
219 end
220 ##
221 subse c t i on Platinum
222 s e t Cathodic t r a n s f e r c o e f f i c i e n t (ORR) = 1 .0 # 1 .0 (Tafe l

K ine t i c s)
223 s e t Oxygen r e a c t i on order (ORR) = 1 .0
224 s e t Reference exchange cur rent dens i ty (ORR) [uA/cm2] = 2.47 e−2
225 s e t Reference oxygen concent ra t i on (ORR) = 0.725 e−5 # 0.725 e−5 (

Tafe l)
226 # se t Method for k i n e t i c s parameters (ORR) = Parthasarathy
227 end
228 ##
229 subse c t i on Carbon Black

35

230 s e t E l e c t r i c a l conduc t i v i t y [S/cm] = 88.84
231 s e t Density [g/cmˆ3] = 1 .25 # (default) 2 . 0 | 1 .25 f i t to General

Motors data . With Modif ied Poros i ty th r e sho ld = 0.25884
232 end
233 end
234
235 ##
236 subse c t i on ConventionalCL
237 s e t Platinum load ing on support (%wt) = .46 # 0 .2 (ESDLab Ultra−

th in CL) # 0.46 (Conventional CL) # 0 .5 (GM)
238 s e t Platinum load ing per un i t volume (mg/cm3) = 400 # 400 (GM est imated

width = . 0 0 1 [cm]) # 147.05 (ESDLab Ultra−th in width 0.00017 [cm]) # 125 .0 (
ESDLab Ultra−th in width 0 . 0 002 [cm] [125 = m Pt/Cathode CL th i ckne s s])

239 s e t E l e c t r o l y t e l oad ing (%wt) = 0.30 # 0 .2 | 0 .3 | 0 .4 |
0 .5 (ESDLab t e s t i n g)

240 s e t Act ive area [cmˆ2/cmˆ3] = 2 .0 e5 # 2 .0 e5 (o r i g i n a l) #
0 . 2 , 67462.5 | 0 . 3 , 42987.5 | 0 . 4 , 62500 | 0 . 5 , 60750 (ESDLab Ultra−th in CL

)
241 ######### Pore network #########
242 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in pores = Perco l a t i on
243 s e t Poros i ty th r e sho ld = 0 .3 # 0 .3 (Peter s Thes i s)

0.118 | 0.25884 (Carbon Density = 1.25 [GM f i t t e d])
244 s e t Poros i ty network constant = 4 .0 # 4 .0 (Peter s Thes i s)

2 .0
245 s e t Poros i ty gamma network constant = 0 .0
246 ######### So l i d network #########
247 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in s o l i d phase = Perco l a t i on
248 s e t So l i d network th r e sho ld = 0.118
249 s e t So l i d network constant = 2 .0
250 ######### Ionomer network #########
251 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in e l e c t r o l y t e phase = Perco l a t i on #

Bruggemann | Iden11 | Perco l a t i on | mesh st ructure | Iden09
252 s e t E l e c t r o l y t e network th r e sho ld = 0 .0
253 s e t E l e c t r o l y t e network constant = 2 .0
254 end
255 ##
256 subse c t i on AgglomerateCL
257 s e t Agglomerate compos it ion = ionomer
258 s e t Agglomerate type = sph e r i c a l
259 s e t Agglomerate s o l v e r = an a l y t i c a l
260 s e t Average cur rent in c e l l = false

261 s e t Radius o f the agglomerate [nm] = 100
262 s e t Agglomerate po ro s i t y = 0 .3
263 end
264 end
265
266 ##
267 subse c t i on Membrane l ay e r
268 s e t Mater ia l id = 5
269
270 s e t Membrane l ay e r type =

NafionMembrane
271
272 s e t E l e c t r o l y t e type = Nafion
273 ####
274 subse c t i on Mate r i a l s
275 subse c t i on Nafion
276 s e t Henrys Law Constant for Oxygen [Pa cmˆ3/mol] = 3.1664 e10
277 s e t Henrys Law Constant for Hydrogen [Pa cmˆ3/mol] = 6 .69 e10
278 s e t Method to compute proton conduc t i v i ty = NRE211
279 s e t Method to compute water d i f f u s i o n = Motupally
280 s e t Electro−osmotic drag method = Constant
281 s e t Electro−osmotic drag c o e f f i c i e n t = 1 .0
282 s e t Method for s o rp t i on isotherm = Hinatsu
283 s e t Method to compute enthalpy o f s o rp t i on o f water = Constant

36

284 s e t Enthalpy o f s o rp t i on o f water [J/mol] = 45000.0
285 end
286 end
287 end
288
289 ##
290 subse c t i on Anode c a t a l y s t l a y e r
291
292 s e t Mater ia l id = 6
293
294 s e t Cata lys t l a y e r type = HomogeneousCL #[DummyCL | AgglomerateCL |

HomogeneousCL]
295
296 s e t Cata lys t type = Platinum
297 s e t Cata lys t support type = Carbon Black
298 s e t E l e c t r o l y t e type = Nafion
299 s e t K ine t i c s type =

DualPathKinet ics
300 ####
301 subse c t i on Mate r i a l s
302 subse c t i on Platinum
303 #se t Method for k i n e t i c s parameters (HOR) = DualPathKinet ics #

Required for Wangs Kinet i c s , r e s t parameters automat i ca l l y c a l c u l a t ed
304 s e t Reference hydrogen concent ra t i on (HOR) = 0.59 e−6 #

Required for Dual Path Kinet i c s , r e s t parameters automat i ca l l y c a l c u l a t ed
305 end
306 subse c t i on Carbon Black
307 s e t Density [g/cmˆ3] = 1 .25 #

GM data
308 end
309 subse c t i on Nafion
310 s e t Henrys Law Constant for Oxygen [Pa cmˆ3/mol] = 3.1664 e10
311 s e t Henrys Law Constant for Hydrogen [Pa cmˆ3/mol] = 6 .69 e10
312 s e t Method to compute proton conduc t i v i ty = NRE211
313 s e t Method to compute water d i f f u s i o n = Motupally
314 s e t Electro−osmotic drag method = Constant
315 s e t Electro−osmotic drag c o e f f i c i e n t = 1 .0
316 s e t Method for s o rp t i on isotherm = Hinatsu
317 s e t Method to compute enthalpy o f s o rp t i on o f water = Constant
318 s e t Enthalpy o f s o rp t i on o f water [J/mol] = 45000.0
319 end
320 end
321 ####
322 subse c t i on ConventionalCL
323 s e t Platinum load ing on support (%wt) = .46 # 0 .2 (ESDLab Ultra−th in CL)

0.46 (Conventional CL)
324 s e t Platinum load ing per un i t volume (mg/cm3) = 400 # 400 (GM est imated width

= . 0 0 1 [cm]) # 147.05 (ESDLab Ultra−th in width 0.00017 [cm]) # 125 .0 (ESDLab
Ultra−th in width 0 . 0 002 [cm] [125 = m Pt/Cathode CL th i ckne s s])

325 s e t E l e c t r o l y t e l oad ing (%wt) = 0.30
326 s e t Act ive area [cmˆ2/cmˆ3] = 2 .0 e5 # 1 .2 e5 (Experimental) | 0 .3

Nafion , 42987.5 (ESDLab Ultra−th in CL) | 2 .0 e5
327 ##
328 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in pores = Perco l a t i on
329 s e t Poros i ty th r e sho ld = 0 .3
330 s e t Poros i ty network constant = 4 .0 # 4 .0 (Peter s Thes i s) | 2 .0
331 s e t Poros i ty gamma network constant = 0 .0
332 ##
333 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in s o l i d phase = Perco l a t i on
334 s e t So l i d network th r e sho ld = 0.118
335 s e t So l i d network constant = 2 .0
336 ##
337 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in e l e c t r o l y t e phase = Perco l a t i on

Bruggemann | Iden11 | Perco l a t i on ∗ | mesh st ructure | Iden09
338 s e t E l e c t r o l y t e network th r e sho ld = 0 .0

37

339 s e t E l e c t r o l y t e network constant = 2 .0
340 end
341 ##
342 subse c t i on AgglomerateCL
343 s e t Agglomerate type = sph e r i c a l
344 s e t Radius o f the agglomerate [nm] = 100
345 end
346
347 end
348
349 ##
350 subse c t i on Anode microporous l ay e r
351 s e t Mater ia l id = 7
352 s e t Micro porous l ay e r type = DesignMPL # (default) SGL24BC | DesignMPL
353 subse c t i on DesignMPL
354 s e t Poros i ty = 0 .4 # From exper imenta l data (manufacturers data)

on S i g r a c e l 24BC
355 s e t An i so t rop i c t ranspo r t = false

356 s e t E l e c t r i c conduc t i v i ty = 88.84 # From exper imenta l data (manufacturers
data) on S i g r a c e l 24BC | 5 .09

357 ######### Pore network #########
358 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in pores = Perco l a t i on
359 s e t Poros i ty th r e sho ld = 0.118
360 s e t Poros i ty network constant = 2 .0
361 ######### So l i d network #########
362 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in s o l i d phase = Perco l a t i on
363 s e t So l i d network th r e sho ld = 0.118
364 s e t So l i d network constant = 2 .0
365 end
366 end
367 ##
368 subse c t i on Anode gas d i f f u s i o n l ay e r
369
370 s e t Mater ia l id = 8
371
372 s e t Gas d i f f u s i o n l ay e r type = DesignFibrousGDL # DummyGDL | SGL24BA
373
374 subse c t i on DesignFibrousGDL # DummyGDL | SGL24BA
375 ######### Composition : #########
376 s e t Poros i ty = 0 .6
377 ######### Gas t ranspor t #########
378 ## Anisotropy
379 s e t An i so t rop i c t ranspo r t = true

380 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in pores = Tomadakis
381 s e t Method e f f e c t i v e t ranspo r t p r op e r t i e s in s o l i d = Perco l a t i on
382 ## XX
383 s e t Poros i ty th r e sho ld X = 0.11 # 0.118 (Peter s Thes i s) | 0 .11
384 s e t Poros i ty network constant X = 0.785
385 s e t Poros i ty gamma network constant X = 0 .0
386 #
387 s e t E l e c t r i c a l conduc t i v i t y X = 16.03 # [S/cm]
388 s e t So l i d network th r e sho ld X = 0.0
389 s e t So l i d network constant X = 1.5
390
391 ## YY
392 s e t Poros i ty th r e sho ld Y = 0.11 # 0.118 (Peter s Thes i s) | 0 .11
393 s e t Poros i ty network constant Y = 0.521
394 s e t Poros i ty gamma network constant Y = 0 .0
395 #
396 s e t E l e c t r i c a l c onduc t i v i t y Y = 272.78 # [S/cm]
397 s e t So l i d network th r e sho ld Y = 0.0
398 s e t So l i d network constant Y = 1.0
399 end
400
401 end

38

402 ##
403 # END Fuel c e l l data
404 end
405
406 ##
407 ##
408 subse c t i on Output Var iab l e s
409 s e t num output vars = 1
410 s e t Output var 0 = cathode cur r ent
411 end
412
413 ###############
414 subse c t i on Output
415 subse c t i on Data
416 s e t Output format = vtk
417 end
418 subse c t i on Grid
419 s e t Format = gnuplot # eps # x f i g
420 end
421 end

(a) Grid generation (line 11-62)

Type of mesh In the grid generation subsection the user is required to first specify the type of
grid to be assigned to the simulation. Below is a list of possible options.

1 GridExternal | Cathode | Anode | CathodeMPL | Pemfc | PemfcMPL | Agglomerate CL

Once the ‘Type of mesh’ has been specified the user then indicates the number of initial refine-
ments to be carried out (line 15). Figures 4.4, 4.5, & 4.6, illustrates a general refinement process.
The refinement process can also be specified as Global orAdaptive (line 16). During adaptive
refinement the sections that show the largest relative error will be further refined (As seen on the
left hand side of Figure 4.7)

Figure 4.4: Initial
Grid

Figure 4.5: Grid 1st

Refinement
Figure 4.6: Grid 2nd

Refinement
Figure 4.7: Grid
Adaptive Refinement

GridExternal If the GridExternal option has been chosen the user is then also required to
add the following lines to inform FCST as to where to obtain the unique grid.

1 s e t Type o f mesh = GridExternal
2 s e t F i l e name = t e s t . unv # Name o f the mesh f i l e
3 s e t F i l e type = UNV # Meshtype (s ee dea l . i i supported mesh types)

i. Internal mesh generator parameters

This section is responsible for specifying:

39

A. Dimensions (GDL, Cathode,& Anode thicknesses . . .)

B. Material ID

C. Boundary ID

(b) Adaptive refinement (line 65-73)

The user can also define the outputs (initial,intermediate solutions/responses, & final solutions)
during the refinement steps.

The ‘Output solution for transfer’ option, will produce a hidden file containing the current
solution values. This solution can then be read in if ‘Read in initial solution from file’ is
set to true.

The ‘Read in initial solution from file’ option gives the user the ability to read in previ-
ously obtained solutions. This is very beneficial when convergence becomes an issue.

Note: It is advised to have both ‘Output solution for transfer’ & ‘Read in initial solution

from file’ set to true as it can improve convergence rates.

(c) System management (line 77-97)

The system management subsection is responsible for defining the Solution variables & Equations

being used.

The current available variable options are:

i. XO2 (Oxygen Molar Fraction)

ii. XH20 (Water Molar Fraction)

iii. φm (Protonic Electrical Potential)

iv. φs (Electronic Electrical Potential)

v. λ (Membrane Water Content)

vi. Tsolid (Temperature of Solid Phase) [Available in future releases]

(d) Discretization (line 100-115)

The Discretization section defines the order of the solver for the variables being solved for.

i. XO2
(Oxygen Molar Fraction)

ii. XH20 (Water Molar Fraction)

iii. φm (Protonic Electrical Potential)

iv. φs (Electronic Electrical Potential)

v. λ (Membrane Water Content)

Above in our example we have the following line (line 101)

1 s e t Element = FESystem [FE Q(2) ˆ5]

Where;

• FE Q(2) refers to the order of the solver in our case quadratic. This can also take any integer
form 1-6.

• FE Q(2)5. 5 refers to the number of variables included in the quadratic category.
For example, if we wanted to have the first two elements(XO2 ,XH20) solved cubically and the
last three (φm,φs, & λ) solved linearly we would insert the following line.

FESystem[FE Q(3)2 − FE Q(1)3]

The final two sections in System management are:

40

i. Matrix

ii. Residual

These subsections control the number of quadrature points required to evaluate the integrals in
the local weak form of our partial differential equation. The default value of -1 will set the number
of quadrature points to the order of the finite element used plus one in each direction, e.g. for
second order elements, no. of quadrature points in each direction is = 2 + 1 = 3 (In 2D, using
quadratic elements, the number of quadrature points would be 9). Assigning a default value of
−1, for most cases, would be sufficient to achieve an exact solution of the integrals.

(e) Newton (line 120-127)

Required to provide information to the Newton solver.

• Debug residual

• Debug solution

• Debug update

The above debug options prints out the intermediate values for the residuals, solutions and
the updates. This then can be used to locate errors/bugs in the code.

• Max steps
Used to limit the number iterations carried out by the Newton solver.

• Reduction

• Tolerance
Tolerance defines the decimal place accuracy of the Newton solver. Ideally this tolerance
should be kept at 1.0e−9. However, in certain circumstances convergence at these tolerance
may not be possible or feasible given the computational time. In these scenarios it is possible
to reduce the tolerance to 1.0e−4 − 1.0e−6 while still keeping reasonable accuracy.

(f) Fuel cell data (line 130-403)

In the Fuel cell data subsection all relevant properties pertaining to each respective layer and the
operating conditions are specified.

i. Operating conditions (line 133-140)

ii. Cathode gas diffusion layer

A variety of gas diffusion layers may be chosen from. The current available options are:

A. DesignFibrousGDL

B. DummyGDL

C. SGL24BA

When changing between gas diffusion layers type (line 147 [cathode] & 372 [anode]) it is also
required to change lines 149 [cathode] & 374 [anode], and the respective properties specific
to the gas diffusion layer chosen.

iii. Cathode microporous layer

A variety of micro-porous layers may be chosen from. The current available options are:

A. DesignMPL

B. SGL24BC

When changing between micro-porous layers type (line 178 [cathode] & 352 [anode]) it is also
required to change lines 179 [cathode] & 353 [anode], and the respective properties specific
to the micro-porous layer chosen.

41

iv. Cathode catalyst layer

A variety of catalyst layers may be chosen from. The current available options are:

A. DummyCL

B. HomogeneousCL

C. AgglomerateCL

v. Membrane layer

A. Materials (Nafion)

vi. Anode catalyst layer

A variety of Catalyst layers may be chosen from. The current available options are:

A. DummyCL

B. HomogeneousCL

C. AgglomerateCL

vii. Anode microporous layer

A variety of micro-porous layers may be chosen from. The current available options are:

A. DesignMPL

B. SGL24BC

viii. Anode gas diffusion layer

A variety of gas diffusion layers may be chosen from. The current available options are:

A. DesignFibrousGDL

B. DummyGDL

C. SGL24BA

(g) Output Variables (line 408)

In this section it is possible to specify the number of output variables. In our above example we
are only outputting one variable however if we are interested in printing additional variable onto
the terminal screen we add the following format to the parameter file.

1 subse c t i on Output Var iab l e s
2 s e t num output vars = 3
3 s e t Output var 0 = cathode cur r ent
4 s e t Output var 0 = water cathode
5 s e t Output var 0 = anode current
6 end

The remaining Output Variables subsections are used to specify the file format.

i. Data

ii. Grid

Additional sections of the data file have been continued here in order to give the reader an idea of good
coding practices and the benefits of following these guidelines.

42

Cathode microporous layer: Below we can see that for the data file the values for porosity and
electric conductivity are supported by a short piece of text specifying where these values have been
obtained from.

1 subse c t i on Cathode microporous l ay e r
2 s e t Poros i ty = 0 .4 # 0 .4 (Manufacturers Data) on S i g r a c e l 24BC
3 ######### So l i d network #########
4 se t E l e c t r i c conduc t i v i ty = 88.84 # 88.84 (Manufacturers Data) on S i g r a c e l 24BC
5 end

Materials: Another example of this can be seen in the Materials section. We should note that the
Method to compute proton conductivity has information on the default option and also the other
options available to the user. We can also see that the Oxygen diffusion coefficient value has
also been referenced to Peter Dobson’s thesis (2011).

1 subse c t i on Mate r i a l s
2 subs e c t i on Nafion 1100
3 s e t Henrys Law Constant for Oxygen [Pa cmˆ3/mol] = 3.1664 e10
4 s e t Method to compute proton conduc t i v i ty = NRE211 # (default) NRE211 | Constant
5 s e t Oxygen d i f f u s i o n c o e f f i c i e n t [cmˆ2/ s] = 9.726 e−6 # 9.726 e−6 (Peter s Thesis ,

2011)
6 end

The benefits of this type of text formatting is;

• The user is able to see what methods are available without having to search the code. Also if the
user knows they are not going to change the method or values from the default (which is easily
on view) it allows them to delete the text from their own personal file.

The advantages of this is a reduced text file allowing the user to navigate more easily and a
reduction in the probability of accidentally changing methods or variables located under different
subsections.

• The user can now locate the referenced data to check whether that values is acceptable under
the data files operating conditions. However this is not easily done if the value has not been
referenced.

This is not a major issue if the person who has implemented the value still remains contactable,
however if they are not it is a timely procedure in gaining the relevant information (Providing
contact information is still correct)

• By incorporating the reference text it ensures redundancy on the values. During the process of
changing the data file sometimes keys on the keyboard can be accidentally hit causing a change
to one of the values. The value will then go unnoticed if the effects are small. This can cause
problems with the codes results later and will require the user to go through each value checking
them individually. However if the reference text is available with the original value, it decreases
the scrutiny time greatly and reduces the chance of errors entering the text files.

4.2.3 Parameter/Optimization Application File

3. opt app parametric default.prm

The opt app parametric default.prm is used when carrying out parametric studies.

1 ##
2 #

3 # This f i l e i s used to run a multi−dimens iona l parametr ic study .
4 # See end o f f i l e for l i s t o f p o s s i b l e des ign v a r i a b l e s .
5 #

43

6 ##
7
8 subse c t i on Optimizat ion Parameters
9

10 #### NOTE THAT THIS SECTION ONLY EXISTS WHEN RUNNING IN OPTIMIZATION MODE ###
11 ####−−###
12 subse c t i on Optimizat ion Program Options
13 s e t Use dakota input f i l e = false # (default) false

14 s e t Dakota Input Fi l e = dakota input . in # not needed if −Use dakota input
f i l e = false−

15
16 s e t Optimizat ion method = mult id im parameter study # mult id im parameter study |

optpp q newton | n l 2 s o l | nc su d i r e c t
17 end
18
19 subse c t i on Design Var i ab l e s
20 s e t num des i gn var i ab l e s = 1 # 2
21 s e t DV 0 name = V ce l l # P c e l l
22 s e t DV 1 name = T c e l l # P c | RH a
23 s e t DV 2 name = prc Pt c # RH c | prc Pt c
24
25 ####### Lower Bound #######
26 ####### lb < −1e30 for − i n f #######
27 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
28 s e t DV 0 lb = −1.1 # V # Changed to −1.1 , f o r c e dekota to s t a r t at −1.1
29 s e t DV 1 lb = 303 # K #
30 s e t DV 2 lb = 0 .2 # % #
31
32 ####### Upper Bound #######
33 ####### ub > 1e30 for i n f #######
34 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
35 s e t DV 0 ub = −0.1 # V #
36 s e t DV 1 ub = 353 # K #
37 s e t DV 2 ub = 0 .5 # % #
38
39 ####### Parameter Study Pa r t i t i o n s #######
40 ### NOTE: Evaluated at n+1 po in t s between lower and upper bound ###
41 ###−−−###
42 s e t DV 0 part i t ion = 50
43 s e t DV 1 part i t ion = 8
44 s e t DV 2 part i t ion = 10
45 end
46
47 subse c t i on Responses
48 s e t num object ives = 1
49 s e t num nl cons t ra in t s = 0 # (default) 0
50 s e t num eq const ra int s = 0 # (default) 0
51
52 s e t RESP 0 name = current
53 end
54 end

Located at the bottom of all opt app files in both parametric & optimization is a list of design variables
available for the user to carry out a parametric studies or optimization. As of 1-SEP-2013 the
following table lists the current parameters that can be passed to DAKOTA for parametric studies/
optimization.

If the user requires additional variables for parametric/optimization studies, modification of the
dakota application.cc file should be carried out.

1 ######### Li s t o f Po s s i b l e Design Var iab le Names #########
2 #########−−#########
3 # // Conventional_CL.cc

44

4 # V Pt c | V Pt a // Platinum loading per unit volume [mg/cm3] (Cathode | Anode)

5 # prc Pt c | prc Pt a // Platinum loading on support [%wt] (Cathode | Anode)

6 # prc N c | prc N a // Electrolyte loading [%wt] (Cathode | Anode)

7 # Av c | Av a // Active area [cm^2/cm^3] (Cathode | Anode)

8
9 # // Agglomerate_CL.cc

10 # r a gg c | r agg a // Radius of the agglomerate [nm] (Cathode | Anode)

11 # r agg // Radius of the agglomerate [nm] ** possibly redundant **

12 # e p s i l o n a g g c | ep s i l o n agg a // Agglomerate porosity (Cathode | Anode)

13 # ep s i l on agg // Agglomerate porosity ** possibly redundant **

14
15 # // Operating_Conditions.cc

16 # V ce l l // Cell Voltage

17 # T ce l l // Cell Temperature

18 # dV a // Voltage drop in the Anode

19 # P c | P a // Pressure (Cathode | Anode)

20 #

21 # RH c | RH a // Relative Humidity (Cathode | Anode)

22 # OCV // Open Circuit Voltage

23
24 # // Geometries.cc

25 # L CCL | L ACL // CL thickness (Cathode | Anode)

26 # L CGDL | L AGDL // GDL thickness (Cathode | Anode)

27 # L CMPL | L AMPL // MPL thickness (Cathode | Anode)

28 # Ch width // Channel Width (Cathode | Anode)

Optimization Program Options: The Optimization Program Options of the opt app paramet-
ric file is responsible for telling FCST whether it is required to formulate its own dakota input.in file
or if you are supplying DAKOTA with a predefined input file (line 13 & 14).

“Use dakota input file” & “Dakota Input File”: If Use dakota input file is set to false

then FCST will pass on the information specified in the opt app parametric default.prm file and
DAKOTA will print out a new dakota input.in at run time. If however it is set to true we are telling
FCST that we have already specified an input file and that DAKOTA should use this directly rather
than reading the information from the rest of the opt app file.

Note: For completeness ‘‘Use dakota input file’’ & ‘‘Dakota Input File’’ have been included
in the default parametric file, however, when the user is not using their own dakota input.in file both
line 13 & 14 can be deleted.

Given that in most cases the user specifies all the parametric & optimization information in the opt app

file. The following descriptions will be relevant for cases when Use dakota input file = false.

Optimization Method: The Optimization method command is used to specify the type of study
that is being carried out (optimization, parametric study, least squares fit, ...) for additional informa-
tion on Optimization methods see section 4.3. In our case we are looking to carry out a parametric
study so the multidim parameter study should be specified.

Design Variables: In the design variables section (line 19-45) we specify the number of design
variables that we want to change (line 20), the upper and lower bounds for that variable (line 25-37),
and the number of points that we want to evaluate between the upper and lower bounds (line 39-45).

45

num design variables: In the example above we have specified one design variable V cell for a
single parametric study. The corresponding upper, lower bounds, and partitions can be found at line
28, 35, and 42.

If the user wants to conduct a multi-dimensional parametric study we would simply change num design variables

value from one to whatever number of variables required. In the example about we have the capabilities
of increasing the number of variables to three. If the user requires more variables than this the user
can simply add additional DV # name and the corresponding upper, lower bound and partitions.

Note: The upper and lower bound of the voltage have been set to negative. This is because DAKOTA
will vary its parameters from the lowest value to the highest value (In the non-negative case this is
from 0.1 - 1.1 [V]).

During the solving process FCST uses the last mesh data and node values as the initial starting point
for the next point evaluation. As the function evaluations become more difficult as we enter the mass
transport region (V cell of 0.3 - 0.1) the time taken to evaluate these points is much longer. If
we change the voltage values to their negative the parametric study will go from 1.1 to 0.1 [V], this in
turn decreases the solving time and allows the solver to use the previous values as appose to starting
at the 0.1 [V] (the most difficult case).

Additional advantages as well as reduced time is that in some cases if the solver begins at lower voltages
(e.g. 0.1 [V]) the solver is unable to to converge due to the low oxygen values however if the solver
starts at the ’easier case’ (high voltages 1.1 - 0.8 [V]) it will carry on the previous solutions and be
able to converge at the lower voltages.

Responses: The response section of the opt app parametric file, specifies the number of outputs
desired in the dakota tabular.dat data file, in our case there is only one objective value (Current
Density [A/cm2]) line 52.

It also is responsibly for specifying the type and number of constraints. There are two types of
constraints; Equality (line 49) and Inequality (line 50), in general we do not typically use constraints
in parametric studies so this section will be covered in more detail in the optimization section.

4.3 Optimization using FCST

When running an Optimization study the user requires three files, as seen above with parametric studies.
The only difference however is that we change out(alter) the third file to an optimization file/format.

opt app optimization default.prm

1 ##
2 #

3 # This f i l e i s used to run the opt imiza t i on i n t e r f a c e .
4 # See end o f f i l e for a l i s t o f opt imiza t i on v a r i a b l e s .
5 #

6 ##
7
8 subse c t i on Optimizat ion Parameters
9

10 #### NOTE THAT THIS SECTION ONLY EXISTS WHEN RUNNING IN OPTIMIZATION MODE ###
11 ####−−###
12 subse c t i on Optimizat ion Program Options
13 s e t Use dakota input f i l e = false # (default) false

14 s e t Dakota Input Fi l e = dakota input . in
15
16 s e t Optimizat ion s t r a t e gy = s ing le method # sing le method | mu l t i s t a r t |

pa r e t o s e t | hybrid
17 s e t Optimizat ion method = optpp q newton # (default) optpp q newton | n l 2 s o l |

nc su d i r e c t

46

18
19
20 ######### Method Independent Parameters #########
21 #########−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#########
22 s e t Maximum i t e r a t i o n s = 200 # (default) 100
23 s e t Maximum func t i on eva lua t i on s = 2000 # (default) 1000
24 s e t Constra int t o l e r an c e = 1 .0 e−4 # (default) 1 . 0 e−4
25 s e t Convergence t o l e r an c e = 1 .0 e−4 # (default) 1 . 0 e−4
26
27 ######### Numerical Gradient Parameter #########
28 #########−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#########
29 s e t Numerical g r ad i en t s = true # (default) false | true

30 s e t Numerical g rad i en t type = c en t r a l # (default) forward | c e n t r a l
31
32
33 ######### Method S p e c i f i c Parameters #########
34 ######### OPT++ #########
35 #########−−−−−−−−−−−−−−−−−−−−−−−−−−−−#########
36 subse c t i on OPT++
37 s e t Gradient t o l e r an c e = 1 .0 e−4 # (default) 1 . 0 e−4
38 s e t Step length to boundary = 0 .2 # (default) 0 . 9
39 s e t Center ing parameter = 0 .8 # (default) 0 . 2
40 s e t Merit func t i on = arga e z t ap i a # (default) a r ga e z t ap i a
41 end
42 end
43
44 subse c t i on Design Var i ab l e s
45 s e t num des i gn var i ab l e s = 1
46 s e t DV 0 name = L CCL
47 s e t DV 1 name = prc N c
48
49 ####### I n i t i a l Point #######
50 #######−−−−−−−−−−−−−−−#######
51 s e t DV 0 ip = 1.65 e−4
52 s e t DV 1 ip = 0.30
53
54 ####### Lower Bound #######
55 ####### lb < −1e30 for − i n f #######
56 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
57 s e t DV 0 lb = 0 .8 e−4
58 s e t DV 1 lb = 0.20
59
60 ####### Upper Bound #######
61 ####### ub > 1e30 for i n f #######
62 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#
63 s e t DV 0 ub = 10e−4
64 s e t DV 1 ub = 0.50
65
66 ####### Sca l e s #######
67 #######−−−−−−−−#######
68 s e t DV 0 scale method = value # none | auto | value | l og
69 s e t DV 1 scale method = value # none | auto | value | l og
70
71 s e t DV 0 scale = 1e−4
72 s e t DV 1 scale = 0 .1
73
74 ####### Step s i z e #######
75 #######−−−−−−−−−−−#######
76 s e t DV 0 step = 1e−5
77 s e t DV 1 step = 1e−4
78
79 end
80
81 subse c t i on Responses
82 s e t num object ives = 1

47

83 s e t num nl cons t ra in t s = 3
84 s e t num eq const ra int s = 0
85
86 s e t RESP 0 name = current
87 s e t RESP 1 name = m Pt c
88 s e t RESP 2 name = ep s i l o n V ca t c
89 s e t RESP 3 name = ep s i l o n N ca t c
90 s e t RESP 4 name = ep s i l o n S c a t c
91 s e t RESP 5 name = L CCL
92
93 ####### Response Numbers must match #######
94 ####### Constra int Lower Bound #######
95 ####### lb < −1e30 for − i n f #######
96 #######−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#######
97 s e t RESP 2 lb = 0.118
98 s e t RESP 3 lb = 0.118
99 s e t RESP 4 lb = 0.118

100 s e t RESP 5 lb = 0 .8 e−4 # (ESDLab , Ultra−th in CCM, = 2 microns) 2e−4
101
102 ####### Constra int Upper Bound #######
103 ####### ub > 1e30 for i n f #######
104 #######−−−−−−−−−−−−−−−−−−−−−−−−#######
105 s e t RESP 2 ub = 1 .0
106 s e t RESP 3 ub = 1 .0
107 s e t RESP 4 ub = 1 .0
108 s e t RESP 5 ub = 2e−4 # (ESDLab , Ultra−th in CCM, = 2 microns) 2e−4
109
110 ####### Equal i ty Constra int #######
111 #######−−−−−−−−−−−−−−−−−−−−−#######
112 s e t RESP 1 eq = 350
113 end
114 end

In the above example of a opt app optimization file we will note that many of the variables have
been seen earlier in the opt app parametric file. These next sections will look at describing the additional
changes and variables applicable to optimization in FCST.

Optimization Method: The Optimization method command is used to specify the type of study that
is being carried out. There area

1. single method

The single method is selected when the user is running parametric studies or optimization where they
require only one optimization method.

2. multi start

The multi start method will restart the optimization multiple times specified by the user.

3. pareto set

The pareto set method is only utilize during multi-objective optimization (4.4).

4. hybrid

The hybrid method uses additional optimization methods. An example of this would be to use a
global method to locate an area in the entire feasible region. Then once a sufficient criteria has been
met the optimization method will be changed to a local method in order to take advantages of the high
convergence rate.

48

Optimization Program Options: The Optimization Program Options consist of the same variables
as seen in opt app parametric file however we also notice three additional Classifications:

1. Method Independent Parameters

2. Numerical Gradient Parameters

3. Method Specific Parameters

Method Independent Parameters: Consists of parameters that have no dependencies on the type of
optimization method being used. This section tells FCST the maximum number of iterations & function
evaluates (line 22 & 23)that can be carried out during optimization.

It also sets how strictly the method sticks to the constraints and the tolerance needed for convergence
(line 24 & 25).

Note: Depending on the optimization problem, sometimes convergence issues can arise. One way to
alleviate this issue is to relax the Convergence tolerance from the default 1.0e−4 to maybe 1.0e−3.

The same idea can be applied to the Constraint tolerance depending on how heavily constrained the
problem is.

Numerical Gradient Parameters: Here is where we specify the type of gradient method we want to
employ.

1. Numerical Gradients, as seen in the example (line 30)

2. Analytical Gradients

When using numerical gradients we also have an additional specification on whether we want to use
Forward or Central differentiation (line 31).

As we can see from figure 4.8 using central differentiation is a much more accurate form of predicting
the slop of a function. Having said this we must also take note of equations 4.1 & 4.2. In equation 4.2 we
can see that we have doubled the function evaluations which in turn doubles the amount of time required to
carry out the analysis.

In some cases when carrying out function evaluations they will be highly expensive or in some cases
convergence can be an issue. In these cases although not ideal it is preferable to use Forward differentiation

1. Forward

4f
4x

=
f(x+4x)− f(x)

4x
(4.1)

2. Central

4f
4x

=
f(x+ 4x

2)− f(x− 4x
2)

4x
(4.2)

49

Figure 4.8: Comparison of Forward, Backward, & Central Differentiation

Method Specific Parameters: This section is specific to the method being used. In the above example
it is specific to the OPT + + library. An additional example has been given below however if curious the
reader is advised to see the default optimization methods located in:

1 $. / data/ cathode / opt imiza t i on / opt imizat ion methods cathode /

or

1 $. / data/mea/ opt im i sa t i on / optimizat ion methods mea /

In the following short example we are using a method from the SCOLIB library, the coliny pattern search

algorithm. In this case we would change the Optimization method = coliny pattern search as appose
to optpp q newton (line 17).

We then would then replace (line 33 - 41) in the above opt app optimization file with the new method
specific section.

1 ######### Method S p e c i f i c Parameters #########
2 ######### SCOLIB (COLINY) #########
3 #########−−−−−−−−−−−−−−−−−−−−−−−−−−−−#########
4 subse c t i on c o l i n y pa t t e r n s e a r c h
5 s e t I n i t i a l Delta = 2 # (default) 1
6 s e t Threshold Delta = 0.0001 # (default) 0 .0001
7 end

Design Variables Section: The Design Variables Section is similar to the opt app parametric file
except for two additional subsections.

1. Scales

2. Step size

Scales: The scales section has two specifications

1. scale method

The scale method specifies whether you are going to specify no scale (none), auto scaling, log, or a
value. In general it is good practice to specify a scale value as it allows the user to have a definite
reference point, when using auto if there is a change in magnitude it will go unnoticed by the user in
the final output solution.

50

2. scale value

The scale value is the magnitude of the variable. For example if the variable is temperature we know
that the scale is 100 as temperature is given in Kelvin (353 - 368 [K]). If its Nafion loading the scale
is 0.1 as Nafion loading is a percentage (20 - 50 %).

Step Size: The step size refers to the4x in equations 4.1 & 4.2. Greater the step size the less computations
that will be required, however this also means the greatest error as the error is proportional to (4x)2.
Therefore there is a fine trade off between computational time and error.

Responses Section: The Responses section has changes slightly compared to the opt app parametric file
as we are now considering constrained optimization. If the above example was unconstrained optimization
there would be no difference between the opt app parametric and opt app optimization responses section.

There are two types of constraints:

1. Linear (Equality) Constraints (line 83)

2. Non-Linear Constraints (line 84)

In the above case we have three non-linear constrains and one linear constraint.

Non-Linear Constraints: Like the Design Variable section each nonlinear constraint requires a upper
and lower bound (line 97 - 108). If no finite upper or lower bound is to be specified 1e30 or 1e−30 can be
specified.

Linear (Equality) Constraints: Unlike Non-Linear Constraints, Equality constraints only require the
response variable to equal a value (line 112).

4.4 Multi-Objective Optimization using FCST

To achieve multi-objective optimization we must first change three parameters.

1. Optimization strategy (line 16)

2. num design variables (line 84)

3. num objectives (line 82)

Optimization strategy When carrying out multi-objective optimization we can no longer optimize for
just one objective function this is especially the case when an improvement of one objective comes at
the expense of another (Performance & Cost). In order account for the additional objective function we
incorporate weighting factors which specifies the importance of one objective over the other. The weights
are referred to a Pareto Weights or Pareto Set.

In FCST the default Pareto set is for two design variables. Figure 4.9 below shows the multi-objective
weights for two design variables.

51

Figure 4.9: Pareto Set for 2 Design Variables

num design variables & num objectives: Once the Optimization strategy has been set to pareto set

we then change both the num design variables & num objectives to 2 or whatever number of design variables
are specified. At present FCST like most multi-objective engineering problems, considers only two design vari-
ables however this can be easily modified by changing the default Pareto set found in dakota application.cc.

4.5 DAKOTA Methods

The following list is all of the current DAKOTA Methods available as of 1-MAY-2013. The methods are
known to work with FCST and can be utilized. For detailed discriptions on the individual methods see
DAKOTA manuals.

1. asynch pattern search

2. bayes calibration

3. centered parameter study

4. coliny cobyla

5. coliny direct

6. coliny ea

7. coliny pattern search

8. coliny solis wets

9. conmin frcg

10. conmin mfd

11. dace

12. dl solver

13. dot

14. dot bfgs

15. dot frcg

16. dot mmfd

17. dot slp

18. dot sqp

19. efficient global

20. fsu cvt

21. fsu quasi mc

22. global evidence

23. global interval est

24. global reliability

25. importance sampling

26. list parameter study

27. local evidence

28. local interval est

29. local reliability

30. moga

31. multidim parameter study

32. ncsu direct

33. nl2sol

34. nlpql sqp

35. nlssol sqp

36. nonlinear cg

37. npsol sqp

38. optpp cg

39. optpp fd newton

40. optpp g newton

41. optpp newton

42. optpp pds

43. optpp q newton

44. polynomial chaos

45. psuade moat

46. richardson extrap

47. sampling

48. soga

49. stanford

50. stoch collocation

51. surrogate based global

52. surrogate based local

53. vector parameter study

52

4.6 Fuel Cell Design & Optimization Using FCST

As we’ve seen above FCST also has the capabilities to perform optimization studies. Any application
that is inherited from OptimizationBlockMatrixApplication has the appropriate interface to be used for
optimization studies. Information on how to run optimization can be found in sections 4.3 & 4.4.

To perform optimization studies, FCST interfaces with the open source libraries DAKOTA developed
by Sandia National Laboratory. For more information about the DAKOTA library please click here. The
FCST developers have developed an interface so that DAKOTA and FCST can interact seamlessly.

4.6.1 FCST classes that interact with DAKOTA (Developers Only)

Interaction between FCST and DAKOTA is achieved by using simulation builder which will call the
run optimization() function.

When FCST is run as seen in figure 4.3 the FCST code is called on once in order to run a specific
data point. However in parametric or optimization studies we require multiple points to be evaluated. This
requires the use of the DAKOTA libraries in order to change the variables after each iteration. The two
main files used to interface with DAKOTA are:

1. dakota direct interface

2. dakota application

Once the initial stages of the code have been carried out by simulator builder, simulator selector,
and dakota application, declaring and initialing all the variables from the main app , data app , &
opt app files. The main.cc file then proceeds to the run() function in simulator builder.cc (see below)
in order to run the simulation.

In the run() function we can see in line 10 where the code checks to see if its running an analysis or
parametric/optimization study, as explained in 4.2.1. During parametric/optimization studies the code will
enter line 12 and proceed to the run optimization() function in simulator builder.cc.

1 template<int dim>
2 void SimulatorBui lder<dim> : : run ()
3 {
4 t imer . r e s t a r t () ;
5
6 if (r un t e s t s) r un t e s t () ;
7 else

8 {
9 if (dakota use | | dako ta d i r e c t)

10 {
11 run opt imiza t i on () ;
12 }
13 else

14 {
15 //-- Select the application you want to run:

16 app l i n = s im s e l e c t o r−>s e l e c t a p p l i c a t i o n () ;
17 //-- Select the solver you want to run:

18 newton = s im s e l e c t o r−>s e l e c t s o l v e r (app l i n . get ()) ;
19 //-- Select the solving method you want to run , e.g. adaptive refinement:

20 s o l v e r = s im s e l e c t o r−>s e l e c t s o l v e r me thod (app l i n . get () , newton . get ()) ;
21 // Here we have collected all information:

22 dea l l o g << "Run program using input file: " << s imu la to r pa ramet e r f i l e name << std : :
endl ;

23 d ea l l o g . pop () ;
24 so lve r−>s o l v e (s imu la to r paramete r f i l e name , param) ;
25 t imer . stop () ;
26 }
27 }
28
29 t imer . stop () ;

53

http://dakota.sandia.gov/software.html

30 dea l l o g . push ("MAIN") ;
31 d ea l l o g << "The program was executed in: " << t imer . wa l l t ime () << " seconds " << std : :

endl ;
32 d ea l l o g << "=============== END ====================" << std : : endl ;
33 d ea l l o g . pop () ;
34
35 }

The main points to note once we enter the run optimization() function are:

1. Is DAKOTA running in Parallel or Series? (line 8)

As of 1-MAY-2013 Series is the only option available. This may change in the future.

2. Are we running a Non-Linear Least Squares (NLS) method or standard parametric/optimization rou-
tine? (line 16-25)

Note: These are questions that are answered in the opt app file explained earlier in section 4.3.

Once these have been specified the code will execute the run() function (line 28), which begins the
iterative loop until the parametric study has been complete or the stopping criteria have been met in
optimization.An illistration of this can be see in figure 4.10 taken from Peter Dobson’s 2012 paper.

1 void SimulatorBui lder<dim> : : run opt imiza t i on ()
2 {
3 dea l l o g . pop () ;
4 if (dako ta d i r e c t)
5 {
6 // NOTE: Must declare these in order for parameter handler to not complain when reading

the parameter file specified.

7 // Not exclusively required for dakota application to run.

8 Dakota : : Pa r a l l e l L i b r a r y p a r a l l e l l i b ;
9 shared ptr<Dakota : : ProblemDescDB> problem db (new Dakota : : ProblemDescDB (p a r a l l e l l i b)) ;

10 SIM : : DakotaAppl icat ion opt imiza t i on (problem db , op t im i za t i on pa ramet e r f i l e name) ;
11 opt imiza t i on . dec l a r e pa ramete r s (param) ;
12 opt imiza t i on . manage inputs (param) ;
13
14 Dakota : : D i r e c tApp l i c I n t e r f a c e ∗ op t im i z a t i o n i n t e r f a c e ;
15
16 if (opt imiza t i on . use NLS ())
17 {
18 dea l l og<<"Entering DakotaLeastSquaresInterface"<<std : : endl ;
19 o p t im i z a t i o n i n t e r f a c e = new SIM : : DakotaLeastSquares Inter face<dim> (opt imizat ion ,

problem db , param , s im s e l e c t o r , s imu la to r pa ramet e r f i l e name) ;
20 }
21 else

22 {
23 dea l l og<<"Entering DakotaDirectInterface"<<std : : endl ;
24 o p t im i z a t i o n i n t e r f a c e = new SIM : : DakotaDirec t Inte r face<dim > (opt imizat ion ,

problem db , param , s im s e l e c t o r , s imu la to r pa ramet e r f i l e name) ;
25 }
26
27 opt imiza t i on . a s s i g n i n t e r f a c e (o p t im i z a t i o n i n t e r f a c e) ;
28 opt imiza t i on . run () ;
29
30 dea l l o g << "Optimization completed" << std : : endl ;
31 .
32 .
33 .

If running a standard parametric/optimization routine, the following dakota direct interface function
will be used.

54

1 template <int dim>
2 int DakotaDirec t Inte r face<dim> : : der ived map ac (const Dakota : : S t r ing& ac name)

If running a Non-Linear Least Squares (NLS) method, the following dakota direct interface function
will be used.

1 template <int dim>
2 int DakotaLeastSquares Inter face<dim> : : der ived map ac (const Dakota : : S t r ing& ac name)

Figure 4.10: Schematic of Fuel Cell Analysis Code and DAKOTA Optimization Interface (Dobson, 2012)

55

56

Chapter 5

Post-processor

FCST can output result in many different formats using the deal.II output parser. FCST developers however
output the solution in .vtk format and use the open-source post-processing software Paraview to analyze
their results. ParaView is an open-source data analysis and visualization program. ParaView can run in
multiple operating systems. Using Paraview users can quickly analyze their data visually using qualitative
and quantitative methods already implemented in the software.

A Paraview tutorial can be found at the following site. Wolfgang Bangerth and Timo Heister recently
published a very good lecture on how to use Paraview at the following site

57

http://www.youtube.com/watch?v=w-65jufR-bc
http://www.math.tamu.edu/~bangerth/videos.676.32.html

58

Part II

Developer’s Reference Guide (Under
development)

59

Chapter 6

Preliminaries

6.1 Setting up FCST under KDevelop

If you are going to be developing new routines for FCST, we recommend that you use KDevelop. In order
to setup a KDevelop project with FCST follow the steps below:

• In the main menu, go to Setting > Configure KDevelop... Select the Background Parser tab. Disable
the Background Parser. Note this is necessary because FCST is a large code and, unfortunately, parsing
takes a very long time.

• Go to Projects > Open/Import Project... Select the FCST folder. In the next window, select Generic
Makefile. At this point, the project will appear on the left hand side and you can browse through all
files.

• Next, we will setup the environment to run and debug the code within KDevelop.

• Go to Run > Configure Launches...

• Press the ’+’ buttom on the top of the window. Once you press this botton, a new option will open
under either Global or FCST. Select New Native Application Configuration

• On the right of the window, under Executables, enter the FCST binary file. For example,

• Under Behaviour, in Working Directory enter the data folder from which you would like to run the
code. In Arguments, enter the main parameter file, see Figure 6.1.

6.1.1 Formatting OpenFCST files

All files should start with the following information:

1 // --

2 //

3 // FCST: Fuel Cell Simulation Toolbox

4 //

5 // Copyright (C) 20XX -20XX by Energy Systems Design Laboratory , University of Alberta

6 //

7 // This software is distributed under the MIT License

8 // For more information , see the README file in /doc/LICENSE

9 //

10 // - Class: class_name

11 // - Description: short description of class

12 // - Developers: name_developers , affiliation

13 // - Id: Id

61

Figure 6.1: Configuring Configure Launches... in KDevelop

14 //

15 // --

In order to keep the formatting of all files consistent, it is recommended to use the space style for code
readability. In KDevelop, set your formatting options:

• In the main menu, go to Setting > Configure Editor.

• In the ’Editing’ section, select the Indentation tab.

• Set ’Indent Using’ to Spaces, and set the spacing to 4 characters.

62

Chapter 7

FCST structure

7.1 Directory tree

FCST contains six subfolders, namely:

• FuelCell/lib Contains the binary executable fuel cell simulator once FCST has been compiled. To
compile FCST enter the FuelCell folder, change the Makefile to the correct path for Deal.II and Deal.II
libraries and typing $make.

• FuelCell/include Contains all include files (*.h)

• FuelCell/source Contains all source files (*.cc)

• FuelCell/doc Contains all documentation. This includes the Users Manual in html (the main page is
index.html). To generate the manual, enter the folder FuelCell and type

1 $make doc .

To do so, Fuel Cell uses the free package Doxygen. In the makefile the path to Doxygen is specified by
the variable DOXYGEN PATH. The default location is /opt/local/bin/doxygen.

• FuelCell/data Contains data used to run several of the applications in FCST.

• FuelCell/test - Used for CDash (see section 12)

• FuelCell/contrib - Contains OpenSource libraries and codes that have been developed by other peo-
ple and are used within FCST. This include AppFrame (developed by G. Kanschat) and DAKOTA
(developed by Sandia National Labs). Note that the codes have been modified.

The main program file is main.cc in FuelCell/source. This file creates:

• A NewtonExecution object. This object is used to implement the mesh adaptive loop

• NewtonExecution object. This object is used to implement the mesh adaptive loop

• A linear application that implements the fuel cell equations (linearized version of them). There are
several linear applications. The linear solver implements:

– cell residual(): This member function is called by dof application.cc in AppFrame in order to
implement the residual. cellresidual() is in charge to compute the residual for a given cell.

– cell matrix(): This member function is called by block matrix application.cc (via optimiza-
tion block matrix application.cc) and is used to assemble the cell matrix. block matrix application.cc
uses this information to assemble the stiffness matrix for the complete problem.

– solve(): This member function is used to solve the linear system.

63

7.2 Understanding FCST Architecture

EXPLAIN WHAT IS AN APPLICATION, PHYSICS, ETC.

7.3 Understanding FCST Applications: The FCST tutorials

FCST contains several tutorials to get you started developing your own applications. Currently two tutorial
applications have been developed

• Cathode application

• Cathode and membrane application

You can find these two tutorials in the Modules section of the DOxygen documentation, i.e. in file
/doc/html/modules.html. All FCST developers learnt to develop applications by first reading these tuto-
rials. If you are developing new physics classes, then you will be relying heavily on classes from the deal.II
finite element libraries. If this is the case, the FCST developers would recommend any new developers to
look at the tutorials provided in the deal.II website.

!!!!!!!!!!!!!!! IS THERE ANYWAY WE CAN INSERT THE TUTORIALS FROM DOXYGEN HERE
!!!!!!!!!!!!!!!

7.4 FCST Applications

7.4.1 Data files

It is recommended that every application also contains a data file in /fcst/trunk/data with a folder name
corresponding to the name of the application. The data folder should contain four sub-folders as follows

• analysis: This folder contains default (and well documented) main, data and mesh input files to run a
sample analysis problem.

• parametric: This folder contains default (and well documented) main, data, mesh and optimization
files to run a parametric study using FCST and Dakota

• optimization: This folder contains default (and well documented) main, data, mesh and optimization
files to run a parametric study using FCST and Dakota

7.5 Namespace structure

FCST contains four namespaces, namely

• FuelCell

• FuelCellShop

• AppFrame

• AppFrameShop

Namespaces AppFrame and AppFrameShop designate member function in the contributing library AppFrame
which was originally developed by Dr. Guido Kanschat at the University of Heidelberg and is currently main-
tained by Dr. Guido Kanschat and the authors of Fuel Cell Simulation Toolbox (FCST).

Namespaces FuelCell and FuelCellShop form the core of FCST. Namespace FuelCell contains an Appli-
cation and InitialSolution namespace as well as several classes such as OperatingConditions. Application
namespace contains classes that can be used to solve a specific problem such as fluid flow in a channel, or

64

http://www.dealii.org/
http://www.dealii.org/

Figure 7.1: Inheritance tree for ApplicationBase

the phyiscal processes occuring in the cathode of a fuel cell. Based on the nature of the application, two
types of classes are available:

• AppFrame::DoFApplication

• AppFrame::ApplicationCopy

Figure 7.1 shows an overview of the two types of applications.
Classes inherited from AppFrame::DoFApplication are used when we need to implement the govern-

ing equations of the physical problem, i.e. the weak from of the partial differential equations. Class
AppFrame::DoFApplication implements all the methods used to assemble the right hand side, i.e. it contains
a Triangularization (domain mesh), a deal.ii DoFHandler and several other objects to loop over cells. Class
AppFrame:: BlockMatrixApplication is a child of AppFrame::DoFApplication and contains additional func-
tionality in order to assemble and store the global system matrix into a BlockMatrix object. Finally, class
AppFrame:: OptimizationBlockMatrixApplication implements optimization functionality such as functional
evaluation. FCST applications that require assemble of a system matrix and right hand side are inherited
from this application such as FuelCell::AppCathode.

Figure 7.2 provides an example of the inheritance tree for FuelCell::AppCathode. AppCathode inherits
all the functionality of of AppFrame::DoFApplication, AppFrame::BlockMatrixApplication and AppFrame::
OptimizationBlockMatrixApplication. The responsibility of the FCST applications in namespace FuelCell is
to initialize all the variables and to implement three main routines

• cell matrix()

• cell residual()

• solve()

The first two routines are used to implement the element-wise system matrix and the element-wise right
hand side. The latter member function is use to solve the global finite element problem. A tutorial on how
to develop an application can be found in the HTML documentation.

Classes inherited from AppFrame::ApplicationCopy are used to implement iterative loops. For example,
when solving a nonlinear problem, a linear problem is solved iteratively. Therefore, classes that inherit from
AppFrame::ApplicationCopy usually contain an application that inherits from AppFrame::DoFApplication.
In terms of FCST, FCST developer will usually implement AppFrame::DoFApplication and use the already
implemented classes of type AppFrame::ApplicationCopy in order to develop iterative loops for adaptive
refinement, nonlinear problems and time-dependent problems.

As an example, in simulation builder.cc the following process is employed to solve a nonlinear problem:

65

Figure 7.2: Inheritance tree for FuelCell::Application::AppCathode

1 //-- Select the application you want to run:

2 app l i n = s im s e l e c t o r−>s e l e c t a p p l i c a t i o n () ;
3 //-- Select the solver you want to run:

4 newton = s im s e l e c t o r−>s e l e c t s o l v e r (app l i n . get ()) ;
5 //-- Select the solving method you want to run , e.g. adaptive refinement:

6 s o l v e r = s im s e l e c t o r−>s e l e c t s o l v e r me thod (app l i n . get () , newton . get ()) ;
7 // Here we have collected all information:

8 dea l l o g << "Run program using input file: "

9 << s imu la to r pa ramet e r f i l e name << std : : endl ;
10 d ea l l o g . pop () ;
11 so lve r−>s o l v e (s imu la to r paramete r f i l e name , param) ;

In the code above, first an FCST application that inherits from AppFrame::DoFApplication is created. Then,
the application that is used to solve the linear system of governing equations at each iteration is handed in
to a Newton solver that inherits from AppFrame::ApplicationCopy. This solver is in turn handed to another
solver that inherits from AppFrame::ApplicationCopy and that implements an adaptive refinement loop.

Namespace FuelCell is therefore a place holder for applications of type AppFrame::DoFApplication. This
applications are the core of FCST since the assemble the system of equations that need to be solved. Users
can develop their own applications by inheriting AppFrame::OptimizationBlockMatrixApplication and re-
implementing declare parameters(), initialize(), cell residual(), cell matrix() and solve() as shown in Figure
7.2 and explained in detail in the tutorial program for AppCathode. If the problem requires solving the
problem iteratively such as in nonlinear and transient problems, the application will be handed over to an
application of type AppFrame::ApplicationCopy to be solved iteratively.

The namespace FuelCellShop is divided into several other namespaces as follows

1. Material namespace: Specify the properties of common materials used in fuel cells. Examples of
material classes include PureGas baseclass.

2. Layer namespace: Specify the different MEA components in a fuel cell. A BaseLayer has been developed

66

Figure 7.3: Layer namespace structure

in order to standarize this classes. They contain materialid and bondaryid elements to be able to relate
the layer to the mesh as well as many other properties. Layer classes contain material classes in them
that are used in order to obtain the appropriate physical parameters of the layer. Some layers are
homogeneous and some are heterogeneous and anisotropic.

3. Matrix namespace (OLD): Used to assemble the governing equations of a system. For linear problems
this class implements the stiffness matrix for a givem equation. For nonlinear problems it generally
includes ∂R

∂~u . This matrix is used to calculate the step size in a Newton solver.

4. Residual namespace (OLD): Used to assemble the governing equations of the system. For linear system
these classes contain the right hand side of the problem. For nonlinear systems they contain the residual
at the previous iteration, i.e. R(~u).

7.6 Layers Namespace

A Layer in OpenFCST is used to define the properties of a cell in a finite element mesh. A Layer can be
formed with with a single material or, in the case of composite layers such as a gas diffusion layer or a
catalyst layer, it contains several materials and reaction parameters which are then used to compute the
effective properties. An example of a catalyst layer is shown in Figure ??.

The FuelCellShop::Layers namespace contains all the layers available with OpenFCST. All layers inherit
from BaseLayer as shown in Figure ??. BaseLayer is a virutal class. An object of this class should never be
created. BaseLayer simply provides common member functions and data members that apply to all layers.

The layer classes contain a member function named set solution() which parses the uni

7.7 Materials Namespace

No materials contain a set solution. Materials will only set specific variables using a routine such as
set temperature(double).

7.8 Contributing libraries

FCST is distributed with copies of deal.II, Appframe, Dakota, COLDAE, ALGLIB and cpptest. These
projects reside in the subdirectory contrib/. Please note that these projects are copyrighted by others than
the FCST authors and are covered by different licenses. For details, consult their respective webpages. A
copy of their respective license is provided with the code. Inside each contributing library folder you will also
find a file called README.txt. This file contains a list of any modifications that the FCST developers have

67

Figure 7.4: Layer namespace structure

made to the contributing libraries. Note that some FCST authors also contribute to the additional libraries.
For example, Valentin Zingan is also contributor of the deal.II libraries.

7.8.1 APPFRAME

AppFrame was originally developed by Dr. Guido Kanschat at Texas A & M and it is not continued to
be developed by the ESDLab group. AppFrame is a framework to develop a chain of applications. The
idea of these application classes is the possibility to build a chain out of these in order to have several
predefined nested solvers. For this, we distinguish applications roughly in two classes, both derived from
ApplicationBase:

• Terminal applications, which implement the real finite element code like computing residuals on mesh
cells, assembling matrices and solving linear systems.

• Non-terminal applications derived from ApplicationCopy; these usually implement a new solve() func-
tion as an iterative solver around another application. They implement all functions of the Appli-
cationBase interface, either forwarding them to the next inner application by ApplicationCopy or by
providing their own implementation.

Usually a class in a chain communicates values with its next outer class through function arguments.
Nevertheless, at least the terminal application will require values from even outer applications in the chain
in order to compute residuals and matrices correctly. For these, the mechanism of named data provided by
ApplicationData was introduced. Each class can store auxiliary data under a unique name there for use in
inner iterations.

Class DoFApplication

This class it the parent of all terminal applications. It is the base class for applications requiring a Triangu-
lation and a handler for degrees of freedom.

The mesh as well as the dof handler may be created by this class, which is the default, or they may be
provided by another object, in which case they must be specified in the constructor.

Note that in this class the received or created dof handler is associated to the finite element given by
the argument ”Element” on the parameter file. Therefore, this class in not responsible to generate the
system of equations to be solved, only to initialize the dof handler ”Element” can either be a single element

68

of a FESystem. In the latter case, the nomenclature used in the paramter file is: set Element = FESys-
tem[element1 type(element1 degree)ˆnumber of elements1-...-elementN type(elementN degree)ˆnumber of elementsN]
Example: set Element = FESystem[FE DGQ(0)-FE Q(1)ˆ2]

Class BlockMatrixApplication

Text needed here

7.8.2 COLDAE Interface

The class DAESolver, declared in DAE solver.h and defined in DAE solver.cc, provides an interface to the
Fortran 77 boundary-value differential algebraic equations (DAEs) code COLDAE. The code solves DAEs the
consists of a system of mixed-order ODEs

u
(mi)
i = fi(x; z(u(x)), y(x)), i = 1, ..., c,

and algebraic constraints
0 = fi(x; z(u(x)), y(x)), i = c+ 1, ..., c+ d,

for a < x < b. The DAE is subject to a system of mixed-point boundary conditions

gj(ζj ; z(u(ζj))) = 0, j = 1, ...,m∗,

where
a ≤ ζ1 ≤ ζ2 ≤ · · · ≤ ζm∗ ≤ b,

and

m∗ =

c∑
i=1

mi.

The code COLDAE returns an exact solution

z(u(x)) = (u
(1)
1 (x), u

(m1−1)
1 (x), . . . , u(mc−1)

c (x),

where u
(mi)
i is the ith derivative of ui.

The COLDAE interface is demonstrated by solving the DAEs

z′′(x) = y(x) + sin

(
1

1 + x

)
+

2

(1 + x)3
, 0 < x < 1,

0 = y(x) + sin(z(x)),

subject to the boundary conditions

z(0) = 1,

z(1) =
1

2
.

The DAE along with the boundary conditions are defined by a series of functions.
Beginning with the DAE:

1 void f sub (double &x , double z [] , double y [] , double f [])
2 {
3 f [0] = y [0] + s i n (1 .0/(1 .0+x)) + 2 .0/pow(1.0+x , 3) ;
4 f [1] = y [0] + s i n (z [0]) ;
5 }

In the above function, the functions pow and sin are declared in math.h. The Jacobian matrix of the DAE
must also be defined:

69

1 void dfsub (double &x , double z [] , double y [] , double df [])
2 {
3 // Declare an array of pointers for the two dimensional array

4 // that will hold the Jacobian matrix .

5 double ∗∗ dfc ;
6 d fc = new double ∗ [2] ;
7 for (int i =0; i < 2 ; ++i)
8 {
9 dfc [i] = new double [3] ;

10
11 }
12
13 // Define the Jacobian matrix.

14 dfc [0] [0] = 0 . 0 ;
15 d fc [0] [1] = 0 . 0 ;
16 d fc [0] [2] = 1 . 0 ;
17 d fc [1] [0] = cos (z [0]) ;
18 d fc [1] [1] = 0 . 0 ;
19 d fc [1] [2] = 1 . 0 ;
20
21 // Convert the matrix dfc to a one dimensional

22 // array that Fortran will understand.

23 AppFrame : : c t o f o r ma t r i x (2 , 3 , dfc , df) ;
24 }

In the function dfsub, the function AppFrame::c to for matrix converts the C/C++ two-dimensional array
dfc to a one-dimensional array df. The array df is then sent to Fortran and read as a two-dimensional
array. Similar to the other math functions, cos is declared in math.h.

The boundary conditions can be defined as:

1 void gsub (int &i , double z [] , double &g)
2 {
3 if (i == 1) g = z [0] − 1 . 0 ;
4 else if (i == 2) g = z [0] − 1 . 0 / 2 . 0 ;
5 }

In the above function, i refers to the location, between 0 ≤ x ≤ 1, of the ith boundary condition. In this
case, i==1 refers to x = 0 and i==2 refers to x = 1. Similar to fsub, the partial derivatives must be defined
for gsub in a separate function.

1 void dgsub (int &i , double z [] , double dg [])
2 {
3 if (i==1 | | i == 2)
4 {
5 dg [0] = 1 . 0 ;
6 dg [1] = 0 . 0 ;
7 }
8
9 }

Once the functions are defined, a few variables must be defined that contains additional information
about the boundary-value DAE.

1 // Declare an array that holds the

2 // order of each of the ODEs.

3 int ∗mm = new int [1] ;
4 mm[0] = 2 ;
5
6 // Declare the location of each boundary point.

7 double ∗ ze ta = new double [2] ;
8 ze ta [0] = 0 . 0 ;
9 zeta [1] = 1 . 0 ;

An instance of DAESolver can now be created by calling the constructor.

70

1 // Create an instance of the DAE solver class.

2 AppFrame : : DAESolver ∗prob = new AppFrame : : DAESolver
3 (1 , // Number of ODES

4 1 , // Number of algebraic constraints

5 mm, // Array that holds the order of each of the ODEs

6 0 . 0 , // Leftmost boundary point

7 1 . 0 , // Rightmost boundary point

8 zeta , // Location of boundary points

9 fsub , // ptr to ODE function

10 dfsub , //ptr to Jacobian of ODE function

11 gsub , //ptr to boundary -condition function

12 dgsub , //ptr to derivatives of boundary -condition function

13) ;

Optional COLDAE parameters can be set by calling corresponding member function of the DAESolver class.
For example, the number of points in the initial mesh can be set.

1 prob−>s e t i n i t i a l m e s h s i z e (20) ;

These methods must be called before the boundary-value DAE is solved. See the Doxygen documentation
for DAESolver for a complete list of methods.

Once all desired COLDAE parameters are set, the boundary-value DAE can be solved.

1 int f l a g = prob−>DAE solve () ;

The variable flag contains an integer value that reports the success of COLDAE; see Doxygen documentation.
If COLDAE is successful, a continuous solution can be accessed by the use of the DAE solution method. For
example, suppose a solution is required for x = 0.5:

1 double x = 0 . 5 ;
2 double z [2] ;
3 double y [1] ;
4 prob−>DAE solution (x , z , y) ;

In the above code, z contains the solution for the ODEs and y contains the solution for the algebraic
constraints.

7.8.3 Adding a new version of a contribution library to the repository

In order to be in the save side, follow these steps: Step 1 - Rename current contrib folder folder to con-
trib folder.old. For example, if you are trying to update deal.II, type the following commands on the terminal:

1 $svn mv dea l . I I dea l . I I . o ld
2 $svn commit −m"Deal directory for 7.0 moved to deal.II.old"

Step 2 - Download new version of contrib folder from net
Step 3 - Make sure the new code and FCST compile and work fine together
Step 4 - Update subversion to now hold the ”new” version of contrib folder

1 $svn mv dea l . I I dea l . I I . o ld
2 $svn commit −m"Deal directory for 7.0 moved to deal.II.old"

Step 5 - Delete contrib folder.old directory tree

71

72

Chapter 8

Coding Guidelines (DRAFT)

The purpose of this chapter is to specify coding guidelines for developers of the FCST in order to improve
code understanding, reliability and readability.

It is intended that this document will collaboratively cover topics of naming, syntax, documentation, and
development.

8.1 Class and Member Naming Conventions

Naming conventions are defined it this section. Consistent naming is important as it improves code under-
standing and readability. Distinct naming styles help us understand whether a name pertains to a type,
function or variable. It is important that all names communicate without ambiguity the meaning and/or
purpose of the object they represent.

Class naming:
Class names and Types should be written in camel-case with their first letter capitalized. Class names

should consist of un-abbreviated nouns.

1 class ClassName ; //Good

2
3 class my class ; //Not good

Function naming definition:
Function names should be written in camel-case with their first letter in lower case. Function names

should contain verbs that describe their actions without ambiguity. If a class contains two functions with
similar names but different purposes then at least one of the functions should be renamed.

Should we use this name convection or the following get potatoes() which is what we have been using
thus far. If we use getPotatoes we need to recode every single class... Examples:

1 gene ra t e Inve r s e (double numToInvers) : //Good

2
3 compute I (double a) ; //Not good

Variable naming definition:
Use of simple variable names like i or count should be avoided for all cases except for loop counters. The

variable name should reflect the content stored in the variable.

1 . . . anodeKinet i c s //Good

2
3 int num //Not Good

Constant naming definition: Constants should be written as capital letters and the name should
reflect the meaning of the constant. Also, avoid using a single letter, e.g. write GAS CONSTANT instead
of R.

73

1 SPEED OF LIGHT //Good

FCST contains a file with many constants already available named fcst constants.h.
A Word on Commenting Comments can be useful tips that will help us to understand code, but

should not be used primarily to help us understand complicated code. Well written code with correct object
and function naming should be self explanatory without the need for excess comments.

8.2 Class and Member Document Strings

Document strings (doc strings) are comments which accompany class, function and variable definitions in
the header files. They provide information to aid developers wishing to understand and utilize other’s code.
Documentation packages such as Doxygen can parse doc strings to produced styled, easily readable docu-
mentation with minimal developer effort. The following are doc string templates that should be implemented
by FCST developers when creating new classes, functions or variables.

Class Doc String:

1 /**

2 *Authors : List of name authors

3 *

4 *Description : A brief description of the classes purpose

5 *

6 *Use cases : A list of intended uses of the class\

7 *

8 *Notes : Other important information

9 *

10 */

Function Doc String:

1 /**

2 *Description : A brief description of the purpose

3 *

4 *Use cases : A list of intended uses

5 *

6 *Access rules: Public/Private/Protect

7 *

8 *Inputs : Variable descriptions and Types

9 *

10 *Outputs : Description of output

11 *

12 *Notes : Other important information

13 *

14 */

Variable Doc String:

1 /**

2 *Description : A brief description of the purpose , , units (if applicable)

3 *

4 *Use cases : A list of intended uses

5 *

6 *Access rules: Public/Private/Protect

7 *

8 *Notes : Other important information

9 *

10 */

Please note that the correct input syntax for Doxygen:

1 /**

2 *

3 */

74

8.3 Assertations and exception handling

OpenFCST includes many assertations in order to check if member function are receiving the expected data.
Please make sure that all your member functions check that the data you are expect is received by the class.
OpenFCST uses two types of assertations

• Assert: Checks that the desired information is provided. This assertation will only work in debug
mode. This means that when running on optimized mode this check will not take place. However, this
also means that the code performance will not be impacted once you run in optimized mode, i.e. the
default compilation method. If you are coding, always work on debug mode. If you are developing
routines, always work on optimized mode.

• AssertThrow: Some assertations check that the parameters in the input file are correct. Such asserta-
tions should be active in either debug or optimized mode. For such cases use AssertThrow.

An example of an Assert call is as follows:

1 Assert (s o l u t i o n v e c t o r . s i z e () == r e s i d u a l v e c t o r . s i z e () ,
2 ExcMessage ("Solution and residual vectors are not the same size in Class XX,

Function YY")) ;

In this case, if solution and residual are the same size, the code will continue without any problems. if
solution and residual are of different size, i.e. if the assertion is FALSE, then it will output the ExcMessage.

75

76

Chapter 9

Developing Documentation in FCST

FCST documentation consists of two documents, the User and Developer’s Reference Guide that you
are currently reading (located in /fcst/doc/RefGuide/) and the HTML class documentation (located in
/fcst/doc/html/). In order to have access to the latter, the documentation needs to be compiled using
DOxygen by issuing the command make doc in a LINUX terminal. In the following section, the guidelines
for developing the two documents are discussed.

9.1 Developing the User and Developer’s Reference Guide

9.2 Developing DOxygen documentation

THIS SECTION STILL NEEDS TO BE DEVELOPED

9.2.1 TODO list in HTML documentation

If you would like to include new tasks to the TODO list, you can include them in the *.h file where the
task needs to be done. DOxygen will move all TODO tasks to a page in the HTML documentation. The
DOxygen documentation has been setup by Peter Dobson to contain three TODO subcategories in order of
priority. To include a TODO task, go to the *.h file and type the following:

1 \ todo1 Task to do −− Top p r i o r i t y
2 \ todo2 Task to do −− Medium p r i o r i t y
3 \ todo3 Task to do −− Low p r i o r i t y

9.2.2 Linking to other functions

While referencing to a particular method used while explaining a function, it can be linked to the application
by using # before the method name. If the method belongs to the same class, then this would suffice. Else,
we can use the full namespace definition of the function in the documentation. Doxygen will automatically
link the function to its documentation. Same thing can be done for the data members.

For example:

1 /** This structure has two constructors. Default constructor doesn ’t set any value. It also

sets the

2 * boolean member #initialized to \p \b false. This can be checked by using #

is_initialized member function and (...)

3 */

77

78

Chapter 10

Development Process

This section outlines first the approach that developers should take when approaching a new project, i.e.
modify the code directly or create a new branch of the code using Subversion that we can then merge into
the main trunk. Next, the section outlines a development method know as Test driven development (TDD).
TDD insures thorough testing of code throughout its development and implementation life cycle, resulting
in improved reliability.

Coupled with the process of Refactoring, TDD produces robust code that is easily read and understood.
Concepts of TDD and Refactoring shall be briefly explain in the following sections.

10.1 Proposed Development Cycle

In order to reduce the number of undesired bugs in FCST, the following development cycle should be used
when modifying FCST. If you decide to modify FCST you have three options depending on the purpose of
the changes:

• Modifications to trunk directory. If only minor changes are made to the FCST interface, i.e. you
are developing new classes or applications that are not core components of FCST, changes can be
performed directly in the trunk of FCST. Before committing any changes make sure the code compiles
AND that the code passes all FCST tests by running the test script run tests.

• Creation of branches. If you expect to modify any core classes of FCST such as a base class or
AppFrame, it is recommended that the developer creates a new branch for the code, makes all desired
modifications, makes sure the code compiles in several operating systems such as OpenSUSE and
Fedora, makes sure the code passes all FCST tests by running the test script run tests and then,
merge the branch with the trunk.

• stable release creation. Once a year, a new release of FCST will be developed. A stable release is
the version of FCST that will be available on the OpenFCST website.

10.2 Test Driven Development

Test Driven Development (TDD) is a software development methodology which is rather different compared
to the typical development process generally acquire when learning programming. Imagine a programmer
is given a problem for which they must provide a software solution. Instead of diving in “head first“ and
writing code to provide the solution, a TDD programmer first writes a number of Unit test. Unit testing is
a method by which individual units of source code are tested to determine if they are fit for use. In object
oriented programming units are individual member functions. The Unit tests define acceptable behavior of
the code that the programmer intends to create. Once the Unit tests have been created the programmer

79

Figure 10.1: TDD Cycle

may then write the actual code that will provide their programming solution. Whilst writing this code the
programmer uses their Unit tests to ensure the written code behaves correctly,i.e. passes the test.

A more detailed description of the TDD methodology as seen in figure ?? :

1. Creation of a set of Unit tests that define the correct behavior of production code. Note: We must
ensure that these tests initially fail.

2. Creation of production code and subsequent checks to see if it passes unit tests. Work on production
code continues until all tests are passed.

3. Code is cleaned. Refactoring increase readability and understanding of code.

4. More test cases may be added in order to ensure sufficient testing. The number of unit tests required
for satisfactory testing is subject to the programmers judgment.

Advantages of TDD are as follows:

1. Increased reliability of code

2. Programmers who write more tests are more productive

80

3. Not just a validation of correctness: TDD also drives development by forcing the programmer to think
strongly about how their code will be used. This leads to smaller more focused classes and cleaner
interfaces.

4. Units tests act as documentation: Testing functions are understandable examples of how the production
code should be used

5. TDD ensures consistent testing off all resources throughout the development of a piece of software

10.2.1 Unit Tests

Unit tests as already mentioned are tests that determine if individual units of source code are are fit for
use. It is important that unit tests are written very simply in order to ensure correctness (since there is no
tests to ensure that the unit tests are correct). The following is a simple example of a test function and the
corresponding production code it is intended to test.

Unit Test:

1 void testAdd () {
2
3 int expectedAnswer = 5 ;
4 int answer = add (3 ,2) ;
5
6 TEST ASSERT(expectedAnswer == answer) ; //Check to see if output is as expected , and make

record if it is not.

7
8 }

Production code (under test):

1 int add (int a , int b) {
2 return a∗b ; // Obviously this will cause the test to fail

3 }

Obviously the above test will fail because the function add() has been implemented incorrectly. Using a
Unit testing library such as CppTest we will recieve the following output:

1 Fa i lTe s tSu i t e : 0/0 , 0% co r r e c t in 0 .000002 seconds
2 Test : testAdd
3 Su i t e : ExampleSuite
4 F i l e : mytest . cpp
5 Line : 9
6 Message : "expectedAnswer == answer"

10.2.2 TDD Implementation in the FCST

The unit testing structure that is implemented in the FCST is built using a library called CppTest. CppTest
is a portable, powerful and simple, unit testing framework for handling automated tests in C++. The focus
lies on usability and extendability.

Several output formats, including simple text output, compiler-like output and HTML, can be produced.
The tests suit is launched from the system builder class’s run tests() function, see 10.2. Firstly unit tests
are run (which will tests individual components of various classes), then system level tests (similar to the
tests already implemented by Michael Moore).

81

Figure 10.2

82

The operation is as follows:
The “Run tests” parameter is set in the main parameter file.

1 s e t Run t e s t s = true

The run test function in SimulatorBuilder is called, which in turn calls the FCST testing suite.

1 void SimulatorBui lder<dim> : : r un t e s t ()
2 {
3 dea l l o g << "================== Running Unit Tests ===================" << std : : endl ;
4
5 FcstTestSu i te : : r u n t e s t s () ;
6
7 d ea l l o g << "================ System Tests Complete ==================" << std : : endl ;

The FCST test suite runs all of the unit testing suites that it is composed of (currently only the FCST
units testing suite)

1 bool FcstTestSu i te : : r u n t e s t s ()
2 {
3 Test : : Su i t e t s ;
4
5 //add sub tests suites

6 t s . add (std : : auto ptr<Test : : Suite>(new Fcst sUn i t sTes tSu i t e)) ;
7 t s . add (std : : auto ptr<Test : : Suite>(new IonomerAgglomerate3Test)) ;
8
9 Test : : TextOutput output (Test : : TextOutput : : Verbose) ;

10 return t s . run (output) ;
11
12 }

Below is an example of an individual “sub” testing suite. Each individual unit test is added to the test suite
in the constructor and will be called individually when the .run() function is called.

1 #ifndef FCST UNITS TESTSUITE
2 #define FCST UNITS TESTSUITE
3
4 #include <cppte s t . h>
5 #include "fcst_units.h"

6
7
8
9 class Fcst sUn i t sTes tSu i t e : public Test : : Su i t e

10 {
11 public :
12 Fcs t sUn i t sTes tSu i t e ()
13 {
14 //Add a number of tests that will be called during Test::Suite.run()

15 // Generic cases

16 TEST ADD(Fcs t sUn i t sTes tSu i t e : : perBigToSmallTest) ;
17 TEST ADD(Fcs t sUn i t sTes tSu i t e : : bigToSmallTest) ;
18 TEST ADD(Fcs t sUn i t sTes tSu i t e : : perSmallToBig) ;
19 TEST ADD(Fcs t sUn i t sTes tSu i t e : : smallToBig) ;
20
21 // specific Cases

22 TEST ADD(Fcs t sUn i t sTes tSu i t e : : btuToKwh) ;
23 TEST ADD(Fcs t sUn i t sTes tSu i t e : : kwhToBtu) ;
24 }
25 protected :

83

26 virtual void setup () {} // setup resources ... called before Test::Suite.run()

27 virtual void tear down () {} // remove resources ... called after Test:: Suite.run()

28
29 private :
30 // Generic cases

31 void perBigToSmallTest () ;
32 void bigToSmallTest () ;
33 void perSmallToBig () ;
34 void smallToBig () ;
35
36 // Specific cases

37 void btuToKwh() ;
38 void kwhToBtu () ;
39 } ;
40
41 #endif

Below is an example of an individual unit test taken from the “FcstsUnitsTestSuite” test suite. It checks
that the function convert correctly converts units of BTU to units of KJ.

1 void Fcst sUn i t sTes tSu i t e : : btuToKwh()
2 {
3 TEST ASSERT(Units : : convert (1 , Units : : BTU to KJ) == 1 .054) ;
4
5 }

10.2.3 Implementing a new test suite

If you would like to add a unit test suite for a class that you are creating, follow these steps:

1. Create the class test.h and class test.cc files in the unit test folders (use the existing .h and .cc files as
templates)

2. Add ab include statement to your new class test.h file in FCST TEST SUITE.h (under code comment
”List of sub suites”)

3. In FCST TEST SUITE.cc add your new test class in the run tests() function

If you would like your test to be able to see private variables inside the class that it is testing you must
add it as a friend to that class:

1. Go to the header of the class you are testing (class.h)

2. At the top of the file (outside namespace scope) make a reference to your test class (e.g. ”class
nameOfTestClass;”)

3. In the class’s declaration write the friend statement above the public section (e.g. ”friend class ::name-
OfTestClass;”)

10.2.4 Refactoring

Refactoring is a technique for restructuring existing code so to improve it’s readability and user understand-
ing, whithout changing the behaviour of the code in anyway. When refactoring code a programmer looks
for “Bad Programming Smells” and uses various methods to remove them. Code smells are not bugs, but
weakness in code design that make code difficult to understand and can lead to bugs being introduced into
the code.

Some examples of bad programming smells:

84

1. Duplicated code: identical or very similar code exists in more than one location.

2. Long method: a method, function, or procedure that has grown too large or complicated

3. Inappropriate intimacy: a class that has dependencies on implementation details of another class.

4. Too many parameters: a long list of parameters in a procedure or function make readability and code
quality worse.

5. Complex conditionals

6. Temporary variables and fields

7. Use of primatives rather than objects

8. Classes and functions with multiple responsibilities

The following is an example of code that exhibits bad smells (see if you can spot them):

1 void sendMessage (Message dataToSend , s t r i n g phoneNumber , s t r i n g networkOperator) {
2
3 s t r i n g areaCode = "213" ;
4
5 if (networkOperator == "Rogers") {
6 s t r i n g phoneNumber = areaCode + "4" + phoneNumber ;
7 MessageBuffer b ;
8
9 for (int i =0; i < dataToSend . l ength () , i++)

10 b . pack (dataToSend [i]) ;
11
12 send (b , phoneNumber)
13
14 }
15 else if (networkOperator == "Telus") {
16
17 s t r i n g phoneNumber = areaCode + "9" + phoneNumber ;
18 MessageBuffer b ;
19
20 for (int i =0; i < dataToSend . l ength () , i++)
21 b . pack (dataToSend [i]) ;
22
23 send (b , phoneNumber)
24
25 }
26 }

Bad smells include local data (the area codes should not be stored locally but should be the responsibility
of another class such as PhoneBook), and duplicate code inside either if statement. The following code
represents the above code refactored. The refactoring patterns extract method has been used to replace the
code from within the for loop, the pattern extract data has been used to remove the local variables areaCode
as well as the if statement comparisons. The result is code that is shorter, more easily understood, and more
easily reused.

1 void sendMessage (Message dataToSend , s t r i n g phoneNumber , s t r i n g networkOperator) {
2
3 s t r i n g fullPhoneNumer = PhoneBook : : getAreaCode () + PhoneBook : : getOperatorCode (

networkOperator) + phoneNumber ;
4 MessageBuffer bu f f e r = package (dataToSend) ;
5 send (bu f f e r , phoneNumer) ’’
6
7 }

85

8
9 MessageBuffer package (Message dataToSend) {

10 MessageBuffer bu f f e r
11
12 for (int i =0; i < dataToSend . l ength () , i++)
13 bu f f e r . pack (dataToSend [i]) ;
14
15 return bu f f e r ;
16 }

Also not the change of variable names. The new names do a better job at describing their purpose.

10.2.5 Unit Standards

This section will specify standards on what physical units are typically used in the FCST.

86

Chapter 11

Tracking and Ticketing System for
FCST

The ESDLab group maintains a Tracking and Ticketing System for FCST at the following site. In addition,
TODO items can be added to the HTML documentation. See the HTML documentation for a complete list.

11.1 Tracking and Ticketing System Overview

11.2 Using the Ticketing System

87

http://129.128.14.197/trac/login

88

Chapter 12

Daily FCST testing suite: CTest and
CDash

12.1 Testing your code in your local directory

Before committing any changes to the repository, you should make sure that your working copy does not
have any errors. You can test your working copy of FCST by typing the following in the command line in
the FCST main folder:

1 $. / r un t e s t s

All test cases that have been programmed will be executed and the results will appear in two files in the
main FCST folder. The first file created is the tests summary.log, which will give a quick summary of the
results of the tests, this will be opened automatically by the default text editor. The second file created is
the full output from the simulation, this will contained in tests output.log. The summary from each test will
be appended to the end of the output from each test.

At present there are two tests implemented, the app cathode and app pemfc test. The tests comprise of
running the cases contained in the testing folder for each case (i.e. ./data/cathode/testing and ./data/pem-
fc/testing). Each test case has a data file containing expected results that will be compared to the results
from the test. If they are not in agreement, an error message will be printed. To add another test to be run
by ctest, first add the case to the list of tests. This list is contained in the ./test/CTestTestfile.cmake file.
The command ADD TEST is used:

1 ADD TEST(app cathode "tests/app_cathode_case.sh")

The first item is simply a name and can be anything that will describe the test being run. The second item
is the location of the script that contains the test that is to be run. These scripts should always be put in the
./tests/ folder. The tests themselves are simply bash scripts that contain at least the call to the executable
with the correct input data file. Additional capability is added that includes the printing of additional
messages and comparison of expected and simulation results. To create a new bash script containing a test,
please view the app cathode.sh test case as an example (the case is given in the appendix):

The main features of a testing script should include:

• Runs the FCST executable using the correct data file.

• Compares the results to expected results.

• Determines whether the run was successful.

• Prints the results to the tests summary.log file which will be copied to the main FCST folder.

89

Note that if you develop a new test case and feel it should be added to the nightly tests, then please
speak to a CDASH administrator before committing the test script to the repository.

90

Chapter 13

Useful Programming Tips

13.1 Memory Leak Detection

Despite taking all precautions to avoid memory leaks, it is still a possibility. It is recommended that
developers make use of the program Valgrind. It is a freely available, open-source software, and can be
found in the software packaged with most Linux distributions. Valgrind checks memory operations of any
program, without having to modify the program in any way. It will typically make the program run 20-50
times slower than normal. To run, simply call valgrind --options before your normal program call. E.g.

1 va l g r i nd −−leak−check=f u l l −−show−below−main=no −−show−pos s ib ly−l o s t=no
2 −−show−r eachab l e=no . / f u e l c e l l −2d . bin s imu la t i on . prm

will run FCST with a full memory leak check, while ignoring losses outside of the main program (system
memory) and ignoring possible memory leak areas. This tool is particularly useful at pinpointing segmenta-
tion faults, etc.

See the Valgrind documentation for usage.

13.2 Working with pointers

As the complexity of FCST grows, it is easy to lose track of the dependencies between the applications and
the classes that define the physics of the problem. FCST makes frequent use of pointers to pass information
from one area of the code to another. Without careful tracking of pointers, it is possible to program memory
leaks and memory faults into the program. It is recommended that two tools be used. First, the Boost
Libraries implementation of smart pointers. Using these pointers ensures that memory will not be free’d
if it is still in use. Furthermore, there is no need to explicitly delete data contained within a pointer,
reducing the risk of a memory leak. The task to convert regular pointers to smart pointers is underway. For
implementation, see the Boost documentation

13.3 Including files to the include files

In order to make sure that the include files in FCST are looked at first, please include files as follows:
#include”example.h” instead of #include¡example.h¿ for all FCST files.

13.4 Subversion tips

13.4.1 Setting the Id Tag in Subversion

Subversion can be configured to set the tag when you check in a file.

91

http://www.boost.org/doc/libs/1_46_1/libs/smart_ptr/smart_ptr.htm

This configuration has to be done client side. All developers must go through this procedure.

Configure subversion to automatically add the $Id: $ tag do the following [6]

• Update your /.subversion/config by including the lines below. This configuration will automatically
apply the svn:keywords property (which sets the Id tag) to all new files.

1 [m i s c e l l any]
2 enable−auto−props = yes
3
4 [auto−props]
5 ∗ . h = svn : keywords=Id
6 ∗ . cc = svn : keywords=Id
7 Make f i l e . in = svn : keywords=Id

• Set props on existing files. For existing files, you have to set the property manually. Go to the root of
your source tree, and run this command:

• NOTE: For “*.h”, “*.cc” and “Makefile.in” files, the property has already been set in the repository.
So, it isn’t required to do “propset” on these files. The following example code is for future use, for
eg. setting property for new code files like Python script etc.

1 f i nd . \(−name "*.h" −o −name "*.cc" \) −exec svn propset svn : keywords Id {} \ ;

• Go through each file and add the prototype Id tag. Do this at the comments header of each file as
shown below

1 // ---

2 //

3 // FCST: Fuel Cell Simulation Toolbox

4 //

5 // Copyright (C) 2013 by Energy Systems Design Laboratory , University of Alberta

6 //

7 // This software is distributed under the MIT License.

8 // For more information , see the README file in /doc/LICENSE

9 //

10 // - Class: electron_transport_equation.h

11 // - Description:

12 // - Developers: M. Secanell

13 // - Id: $Id: $

14 //

15 // ---

13.5 Troubleshooting

13.5.1 Including new virtual functions in already existing classes

Please note that if you include a new virtual function to a class, you must perform a make clean before
compiling the code again since all the classes that depend on the class you modified must be recompiled. Cur-
rently Make does not recognize this, therefore you must to it manually; otherwise you will get a Segmentation

Fault error when running the program.

92

13.5.2 Corrupted double-linked list error

Sometimes, during code execution, following error is detected:
*** glibc detected *** /home/madhur/FCST/lib/fuelcell 2d.bin: corrupted double-linked list ***

This happens mostly due to compiler messing up the compiled files. When this happens, try cleaning
the compiled files of FCST, using make clean and then re-compiling using make.

93

94

Bibliography

[1] M. Secanell, V. Zingan, M. Bhaiya, P. Wardlaw, M. Moore, K. Domican and P. Dobson, Fuel Cell
Simulation Toolbox, User’s Guide, 2013. URL: http://www.openfcst.org

[2] M. Secanell, Computational Modeling and Optimization of Proton Exchange Membrane Fuel Cells,
Ph.D. thesis, University of Victoria, November 2007.

[3] M. Secanell et al., Multi-variable optimization of PEMFC cathodes using an agglomerate model, Elec-
trochimical Acta, 52(7):2668-2682, 2007

[4] M. Secanell, R. Songprakorp, A. Suleman, N. Djilali. Multi-objective optimization of a polymer elec-
trolyte fuel cell membrane electrode assembly. Energy and Environmental Science. 1:378-388, 2008.

[5] Dobson P., Lei C., Navessin T., Secanell M, Characterization of the PEM fuel cell catalyst layer mi-
crostructure by nonlinear least-squares parameter estimation, Journal of the Electrochemical Society,
159:B514-B523, 2012.

[6] http://www.startupcto.com/server-tech/subversion/setting-the-id-tag. Accessed on June 28, 2013.

95

13.6 Appendix

13.6.1 Example test script

1 # ! / bin /bash
2
3 ##
4 # This f i l e w i l l run the app cathode t e s t that i s conta ined in the data/ cathode / t e s t i n g
5 # f o l d e r . The s c r i p t i s run by c t e s t , keep in mind that the r e s u l t s that would normally
6 # be pr in ted to s c r e en w i l l be suppressed by c t e s t and pr in ted to i t s own f i l e .
7
8 # The s c r i p t w i l l (by line number) :
9 # (1) f i r s t nav igate to the f o l d e r where the t e s t i s

10 # (2) w i l l run the code with the c o r r e c t data f i l e s .
11 # (3) The r e s u l t from the s imu la t i on i s quer i ed to see if i t ran without error by
12 # check ing ${PIPESTATUS [0] } . A zero means the t e s t ran without error .
13 # (4) I f a non−zero r e s u l t i s returned by the s imulat ion , the code w i l l p r i n t out a
14 # message say ing that the re was an error . As this w i l l a l s o be suppressed by the
15 # code , the message i s a l s o pr in ted to the tests summary . l og f i l e . The f i r s t line

16 # conta in ing a ’tee’ command w i l l c r e a t e the f i l e , subsequent c a l l s w i l l append
17 # t h e i r output to the end o f the f i l e , so as not to ove rwr i t e i t .
18 # (5) Before ex i t i ng , the test summary . l og f i l e i s cop ied to the f c s t main f o l d e r
19 # where i t w i l l be opened by the r un t e s t s s c r i p t .
20 # (6) I f the s imu la t i on ran co r r e c t l y , then the r e s u l t s from the s imu la t i on are
21 # compared to expected r e s u l t s . Both s e t s o f r e s u l t s are s to r ed in a t ex t s f i l e s ,
22 # appended with . dat . The te s t compar i son s c r i p t i s a python f i l e that w i l l read in
23 # the two f i l e s and compare them . I f they are not with in a rea sonab l e agreement the
24 # python s c r i p t w i l l return a non−zero (7) and an error i s p r in ted . I f they are in
25 # r ea sonab l e agreement , a zero i s returned ind i c a t ed that a l l i s we l l and a message
26 # i s p r in ted . Again the message i s captured by c t e s t , so i t i s a l s o appended to the
27 # tests summary . l og f i l e .
28 ##
29 (1) cd . . / data/ cathode / t e s t i n g
30 (2) . . / . . / . . / l i b / f u e l c e l l −2d . bin main app cathode tes t . prm
31 (3) if ["${PIPESTATUS [0]}" != "0"] ; then
32 (4) echo 2>&1 | t e e tests summary . l og
33 echo "Results summary from app_cathode test:" 2>&1 | t e e −−append tests summary . l og
34 echo 2>&1 | t e e −−append tests summary . l og
35 echo "-------------------------------------" 2>&1 | t e e −−append tests summary . l og
36 echo "The simulation did not run correctly. " 2>&1 | t e e tests summary . l og
37 echo Please review the t e s t s ou tpu t . l og f i l e " 2>&1 | tee tests_summary.log

38 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" 2>&1 | tee --append tests_summary.log

39 (4) echo 2>&1 | tee --append tests_summary.log

40 (5) cp tests_summary.log ../../../ tests_summary.log

41 exit 2

42 else

43 (6) ../../../ test/test_comparison.py dakota_tabular.dat test_results.dat

44 if ["${PIPESTATUS[0] } " != "0"]; then

45 echo 2>&1 | tee tests_summary.log

46 echo "Resu l t s summary from app cathode t e s t : " 2>&1 | tee --append tests_summary.log

47 echo 2>&1 | tee --append tests_summary.log

48 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" 2>&1 | tee --append tests_summary.log

49 echo "Resu l t s from the t e s t do not match " 2>&1 | tee --append tests_summary.log

50 echo " expected r e s u l t s " 2>&1 | tee --append tests_summary.log

51 echo "Please check r e s u l t s in dakota tabu la r . dat "2>&1 | tee --append tests_summary.log

52 echo " aga in s t that o f t e s t r e s u l t s . dat" 2>&1 | tee --append tests_summary.log

53 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−" 2>&1 | tee --append tests_summary.log

54 echo 2>&1 | tee --append tests_summary.log

55 cp tests_summary.log ../../../ tests_summary.log

56 (7) exit 2

57 else

58 echo 2>&1 | tee tests_summary.log

59 echo "Resu l t s summary from app cathode t e s t : " 2>&1 | tee --append tests_summary.log

60 echo 2>&1 | tee --append tests_summary.log

96

61 echo "−−" 2>&1 | tee --append tests_summary.log

62 echo "Resu l t s from the t e s t match expected r e s u l t s " 2>&1 | tee --append tests_summary.log

63 echo "−−" 2>&1 | tee --append tests_summary.log

64 echo 2>&1 | tee --append tests_summary.log

65 cp tests_summary.log ../../../ tests_summary.log

66 exit 0

67 fi

68 fi

97

	Introduction
	Overview of the program
	About FCST
	License
	Release changes

	I User's Guide
	Installation
	Downloading FCST
	Users
	Developers

	Installing OpenFCST
	System requirements
	Installation steps

	Pre-processor
	FuelCellShop::Geometry Namespace
	Developing a mesh in Salome
	Tutorial
	Meshing with Hexotic

	Salome meshing using python scripts
	Introduction
	Scripting Examples

	Running FCST
	Fuel Cell Analysis Using FCST
	Fuel Cell Parametric Study using FCST
	Main Application File
	Data Application File
	Parameter/Optimization Application File

	Optimization using FCST
	Multi-Objective Optimization using FCST
	DAKOTA Methods
	Fuel Cell Design & Optimization Using FCST
	FCST classes that interact with DAKOTA (Developers Only)

	Post-processor

	II Developer's Reference Guide (Under development)
	Preliminaries
	Setting up FCST under KDevelop
	Formatting OpenFCST files

	FCST structure
	Directory tree
	Understanding FCST Architecture
	Understanding FCST Applications: The FCST tutorials
	FCST Applications
	Data files

	Namespace structure
	Layers Namespace
	Materials Namespace
	Contributing libraries
	APPFRAME
	COLDAE Interface
	Adding a new version of a contribution library to the repository

	Coding Guidelines (DRAFT)
	Class and Member Naming Conventions
	Class and Member Document Strings
	Assertations and exception handling

	Developing Documentation in FCST
	Developing the User and Developer's Reference Guide
	Developing DOxygen documentation
	TODO list in HTML documentation
	Linking to other functions

	Development Process
	Proposed Development Cycle
	Test Driven Development
	Unit Tests
	TDD Implementation in the FCST
	Implementing a new test suite
	Refactoring
	Unit Standards

	Tracking and Ticketing System for FCST
	Tracking and Ticketing System Overview
	Using the Ticketing System

	Daily FCST testing suite: CTest and CDash
	Testing your code in your local directory

	Useful Programming Tips
	Memory Leak Detection
	Working with pointers
	Including files to the include files
	Subversion tips
	Setting the Id Tag in Subversion

	Troubleshooting
	Including new virtual functions in already existing classes
	Corrupted double-linked list error

	Appendix
	Example test script

