
NOMAD User Guide
Version 3.6.0

Sébastien Le Digabel,
Christophe Tribes and

Charles Audet

How to use this guide:

• A general introduction of NOMAD is presented in Chapter 1.

• New users of NOMAD:
Chapter 2 describes how to install the software application.
Chapter 3 describes how to get started with NOMAD.

• NOMAD utilization:
All users can find in Chapters 4 to 7 ways to tailor problem definition, algorithmic
settings and software output.

• Tricks that may help solving specific problems are presented in Chapter 5.

Please cite NOMAD with references [25, 50].

List of acronyms

NOMAD Nonlinear Optimization by Mesh Adaptive Direct Search (software)

MADS Mesh Adaptive Direct Search (algorithm)

LT-MADS Original MADS

OrthoMADS Second MADS

BiMADS Biobjective MADS algorithm

p-MADS Parallel version of MADS

Coop-MADS Parallel version of MADS with cooperation

PSD-MADS Parallel version of MADS with space decomposition

VNS Variable Neighborhood Search

GPS Generalized Pattern Search

v

Contents

List of acronyms v

Contents vi

Preface ix

Part I FIRST NOMAD STEPS 1

Chapter 1 Introduction 3
1.1 What is NOMAD? . 3
1.2 Basics of the MADS algorithm . 4
1.3 Using NOMAD . 5
1.4 Licence . 6
1.5 Contact us . 6
1.6 Supported plateforms and environments . 7
1.7 Authors and fundings . 7
1.8 Acknowledgments . 8
1.9 Type conventions . 8

Chapter 2 Software installation and test 11
2.1 Windows . 11
2.2 Mac OS X . 12
2.3 Unix and Linux . 16
2.4 Matlab for Windows . 17
2.5 Installation directory . 18

Part II BASIC NOMAD USAGE 19

Chapter 3 Getting Started 21
3.1 How to create blackbox programs . 22
3.2 How to provide parameters . 26
3.3 How to conduct optimization . 27

vi

Contents vii

Chapter 4 How to use NOMAD 31
4.1 Optimization in batch mode . 32
4.2 Basic parameters description . 32
4.3 Optimization in library mode . 43
4.4 Interface examples . 52

Chapter 5 Tricks of the trade 57
5.1 Tune NOMAD . 58
5.2 Dynamically plot optimization history . 59
5.3 Tools to visualize results . 59
5.4 Use categorical variables . 59

Part III ADVANCED NOMAD USAGE 61

Chapter 6 Advanced parameters 63
6.1 Parameters description . 63
6.2 Detailed information for some parameters . 66

Chapter 7 Advanced functionalities 71
7.1 Categorical variables . 71
7.2 Biobjective optimization . 74
7.3 Parallel versions . 75
7.4 Sensitivity analysis . 79
7.5 Variable Neighborhood Search . 80
7.6 User search . 81

Part IV ADDITIONAL INFORMATION 83

Appendix A Release notes 85
A.1 Version 3.6 . 85
A.2 Previous versions . 86
A.3 Future versions . 88

Appendix B Developer parameters 91

Appendix C Statistical dynamic surrogates 93

Bibliography 95

General index 101

Index of NOMAD parameters 105

Preface

In many situations, one is interested in identifying the values of a set of variables that maximize
or minimize some objective function. Furthermore, the variables cannot take arbitrary values,
as they are confined to an admissible region and need to satisfy some prescribed requirements.
NOMAD is a software application designed to solve these kind of problems.

The nature of the objective function and constraints dictates the type of optimization methods
that should be used to tackle a given problem. If the optimization problem is convex, or if the
functions are smooth and easy to evaluate, or if the number of variables is large, then NOMAD
is not the solution that you should use. NOMAD is intended for time-consuming blackbox
simulation with a small number of variables. NOMAD is often useful when other optimizers fail.

These nasty problems are called blackbox optimization problems. With NOMAD some con-
straints may be evaluated prior to launching the simulation, and others may only be evaluated a
posteriori. The simulations may take several seconds, minutes hours or even days to compute.
The blackbox can have limited precision and be contaminated with numerical noise. It may
also fail to return a valid output, even when the input appears acceptable. Launching twice the
simulation from the same input may produce different outputs. These unreliable properties are
frequently encountered when dealing with real problems. The term blackbox is used to indicate
that the internal structure of the target problem, such as derivatives or their approximations,
cannot be exploited as it may be unknown, hidden, unreliable or inexistent. There are situations
where some structure such as bounds may be exploited and in some cases, a surrogate of the
problem may be supplied to NOMAD or a model may be constructed and trusted.

This document describes how to use NOMAD to solve your blackbox optimization problem.

ix

Part I

FIRST NOMAD STEPS

1

Chapter 1

Introduction

1.1 What is NOMAD?

NOMAD = Nonlinear Optimization by Mesh Adaptive Direct Search

NOMAD is a software application for simulation-based optimization. It can efficiently explore a
design space in search of better solutions for a large spectrum of optimization problems.

NOMAD is at its best when applied to blackbox functions (see Figure 1.1). Such functions are
typically the result of expensive computer simulations which

• have no exploitable property such as derivatives,

• may be contaminated by noise,

• may fail to give a result even for feasible points.

NOMAD is a C++ implementation of the Mesh Adaptive Direct Search (MADS) al-
gorithm [8, 18, 20] designed for constrained optimization of blackbox functions in the form

3

4 Introduction

NOMAD

Blackbox-

x ∈ Rn
�

f(x)

x ∈ Ω ?

Figure 1.1: NOMAD blackbox optimization.

min
x∈Ω

f(x) (1.1)

where the feasible set Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn, f, cj : X → R ∪ {∞} for all
j ∈ J = {1, 2, . . . ,m}, and where X is a subset of Rn.

1.2 Basics of the MADS algorithm

At the core of NOMAD resides the Mesh Adaptive Direct Search (MADS) algorithm. As the
name implies, these methods generate iterates on a tower of underlying meshes on the domain
space. A mesh is a discretization of the space of variables. However, also as the name implies,
they perform an adaptive search on the meshes including controlling the refinement of the
meshes. The reader interested in the rather technical details should read [18].

The objective of each iteration of the MADS algorithm, is to generate a trial point on the
mesh that improves the current best solution. When an iteration fails to achieve this, the next
iteration is initiated on a finer mesh.

Each iteration is composed of two principal steps called the search and the poll steps. The
search step is crucial in practice because it is so flexible, but it is a difficulty for the theory
for the same reason. search can return any point on the underlying mesh, but of course, it is
trying to identify point that improves the current best solution.

The poll step is more rigidly defined, though there is still some flexibility in how this is imple-
mented. The poll step generates trial mesh points in the vicinity of the best current solution.
Since the poll step is the basis of the convergence analysis, it is the part of the algorithm

1.3. Using NOMAD 5

where most research has been concentrated.

A high-level presentation of MADS is shown in the pseudo-code below.

Algorithm 1: High-level presentation of MADS
Initialization: Let x0 ∈ Rn be an initial point and set the iteration counter k ← 0
Main loop:
repeat

search on the mesh to find a better solution than xk
if the search failed then

poll on the mesh to find a better solution than xk
if a better solution than xk was found by either the search or the poll then

call it xk+1 and coarsen the mesh
else

set xk+1 = xk and refine the mesh
Update parameters and set k ← k + 1

until Stopping criteria is satisfied ;

In addition NOMAD includes the following algorithms:

• A Mixed Variable Programming (MVP) algorithm to optimize with respect to
mixtures of discrete, continuous, and categorical decision variables (see Section 7.1).

• A BiMADS (Biobjective Mesh Adaptive Direct Search) algorithm to consider
a biobjective version of (1.1) (see Section 7.2).

• A Variable Neighborhood Search (VNS) algorithm (see Section 7.5) to escape
local minima.

• Three algorithms for parallel executions (see Section 7.3).

1.3 Using NOMAD
�

NOMAD has no graph-
ical user interface

NOMAD does not provide a graphical user interface to define and perform optimization. Mini-
mally, users must accomplish several tasks to solve their own optimization problems:

• Create a custom blackbox program(s) to evaluate the functions f and cj
OR embed the functions evaluations in C++ source code to be linked with the NOMAD
library.

• Create the optimization problem definition in a parameter file
OR embed the problem definition in C++ source code to be linked with the NOMAD library.

6 Introduction

• Launch the execution at the command prompt
OR from another executable system call.

Users can find several examples provided in the installation package and described in this user
guide to perform customization for their problems. The installation procedure is given in Chap-
ter 2. New users should refer to Chapter 3 to get started. The most important instructions to
use NOMAD are in Chapter 4. In addition, tricks that may help solving specific problems and
improve NOMAD efficiency are presented in Chapter 5. Advanced parameters and functionalities
are presented in Chapters 6 and 7.

1.4 Licence

NOMAD is a free software application released under the GNU Lesser General Public License
v 3.0. As a free software application you can redistribute and/or modify NOMAD source codes
under the terms of the GNU Lesser General Public License.

For more information, please refer to the local copy of the licence obtained during installation.
For additional information you can contact us or visit the Free Software Foundation web site.

1.5 Contact us

Contact information:
École Polytechnique de Montréal - GERAD
C.P. 6079, Succ. Centre-ville, Montréal (Québec) H3C 3A7 Canada
e-mail: nomad@gerad.ca
fax : 1-514-340-5665

All queries can be submitted by email at nomad@gerad.ca. In particular, feel free to ask
technical support for problem specification (creating parameter files or integration with various
types of simulations) and system support (installation and plateform-dependent problems).

Bug reports and suggestions are valuable to us! We are committed to answer to posted requests
as quickly as possible.

Support and
bug report:
nomad@gerad.ca

http://www.gnu.org/licenses/lgpl-3.0.en.html

1.6. Supported plateforms and environments 7

1.6 Supported plateforms and environments

NOMAD source codes are in C++ and are identical for all supported plateforms.

For convenience, the NOMAD installation packages are customized depending on the plateform.
The Mac OS X and Windows installation packages contain executables to quickly start using
NOMAD without having to compile the sources. The Mac OS X version of the executable is
compiled with gcc (g++), version 4. The Windows version of the executable is compiled with
Visual Studio C++ 2010.

The Linux installation package contains no executable but the source codes include a standard
makefile for compilation. The compilation has been tested with gcc (g++), version 4.

NOMAD supports parallel evaluations of blackboxes. However, this capability is obtained by
compiling a parallel version of the source codes using the message passing interface (MPI [58]).
Details on how to proceed are provided in Section 7.3.

A Matlab version for Windows can be obtained at OPTI Toolbox website.

Tested operating systems and environments:

• Unix, Linux & Mac OS X

• Windows Xp and Windows 7

• Matlab 2010a or above for Windows x86 (32bit) and Windows x64
(64bit)

The installation procedure is presented in Chapter 2.

1.7 Authors and fundings

The development of NOMAD started in 2001, and was funded in part by AFOSR, CRIAQ,
FQRNT, LANL, NSERC, the Boeing Company, and ExxonMobil Upstream Research Company.

Developers of the methods behind NOMAD include

• Mark A. Abramson (Mark.A.Abramson@boeing.com), The Boeing Company.

• Charles Audet (www.gerad.ca/Charles.Audet), GERAD and Département de mathéma-
tiques et de génie industriel, École Polytechnique de Montréal.

http://www.i2c2.aut.ac.nz/Wiki/OPTI/
mailto:Mark.A.Abramson@boeing.com
http://www.gerad.ca/Charles.Audet
http://www.gerad.ca

8 Introduction

• J.E. Dennis Jr. (www.caam.rice.edu/∼dennis), Computational and Applied Mathematics
Department, Rice University.

• Sébastien Le Digabel (www.gerad.ca/Sebastien.Le.Digabel), GERAD and Département de
mathématiques et de génie industriel, École Polytechnique de Montréal.

• Christophe Tribes, GERAD and Département de mathématiques et de génie industriel,
École Polytechnique de Montréal.

Version 3.5.1 (and above) of NOMAD is developed by Christophe Tribes. Version 3.0 (and
above) was developed by Sébastien Le Digabel. Previous versions were written by Gilles Couture
(GERAD).

1.8 Acknowledgments

The developers of NOMAD wish to thank Florian Chambon, Mohamed Sylla and Quentin
Reynaud, all from ISIMA, for their contribution to the project during Summer internships, and
to Anthony Guillou and Dominique Orban for their help with AMPL, and their suggestions.

A special thank to Maud Bay, Eve Bélisle, Vincent Garnier, Michal Kvasnička, Alexander Lutz,
Rosa-Maria Torres-Calderon, Yuri Vilmanis, Martin Posch, Etienne Duclos, Emmanuel Bigeon,
Walid Zghal, Jerawan Armstrong and Klaus Truemper for their feedbacks and tests that signif-
icantly contributed to improve NOMAD.

Finally, many thanks to the TOMS anonymous referees for their useful comments which helped
a lot to improve the code and the text of [50].

1.9 Type conventions

The following conventions are used in this document:

• Software and operating systems names are typeset in this font.

• NOMAD is typeset in uppercase.

• Program codes, program executables, shell commands and environment vari-
ables are typeset in this font.

• Parameter names are typeset in this font using uppercase.

• Algorithm names are typeset in this font.

http://www.caam.rice.edu/~dennis
http://www.gerad.ca/Sebastien.Le.Digabel
http://www.gerad.ca
http://www.gerad.ca
mailto:Gilles.Couture@gerad.ca
http://www.gerad.ca
http://www.isima.fr

1.9. Type conventions 9

• Important information is highlighted in a box like this.

Chapter 2

Software installation and test

The installation procedure depends on the plateform you are using. Please refer to the NOMAD
website for downloading Windows, Linux/ Unix, or Mac OS X versions and to the OPTI Toolbox
website for downloading the Matlab version (Windows only).

This chapter contains the installation procedures for the supported plateforms and describes the
content of the installation package. Please refer to the section that fits your needs.

2.1 Windows installation

For Windows, installation requires administrative rights. To start the installation, double-click
on the downloaded file (NOMAD_setup.exe), and follow the instructions.

Warning. The NOMAD executable have been generated with Microsoft Visual C++ 2010.
Hence, the installation procedure may request the installation of Visual Studio 2010 runtime
redistributables. If Microsoft Visual Studio 2010 (Professional or Express edition) is already
installed on your computer, this operation may be skipped. Please note that installing Visual
Studio 2010 runtime redistributables along with Visual Studio 2010 pauses no problem.

Windows environment
variables:
%NOMAD_HOME% and
%NOMAD_EXAMPLES%

Defining environment variables allows a more convenient access to NOMAD. Windows
environment variables are set automatically during installation. The %NOMAD_HOME% environment

11

http://www.gerad.ca/nomad
http://www.gerad.ca/nomad
http://www.i2c2.aut.ac.nz/Wiki/OPTI/
http://www.i2c2.aut.ac.nz/Wiki/OPTI/

12 Software installation and test

variable contains the path to the installation directory. Also, depending on the options selected
during installation, a directory containing examples and a copy of the source codes may have
been created along with a %NOMAD_EXAMPLES% environment variable that contains the path to
this examples directory.
However, the examples directory and the corresponding environment variable are set only for the
current user account during installation. Hence, other users of the computer need to perform
two additional operations after installation is completed:

• Copy the %NOMAD_HOME%\examples directory to a convenient location. This is because
the %NOMAD_HOME% is a read-only directory and running examples requires write permission.

• Set the %NOMAD_EXAMPLES% environment variable to where the examples have been copied.
This is achieved through the |Control Panel|System|Advanced|Environment vari-
ables| start menu or by searching for ‘environment variable’. First, click on the button
to create a new environment variable for the current user. Then add the name NO-
MAD_EXAMPLE and put in the ‘variable’ field the path where examples have been copied.

�

Windows installation
for additional users
requires some extra
operations Testing the installation. Depending on the option selected during the installation, this is

alternatively done by

1 Double clicking on the NOMAD.3.6.0 icon on the desktop.

2 Or click on the NOMAD.3.6.0 icon in the NOMAD.3.6.0 Start Menu.

3 Or start a cmd shell window and type
"%NOMAD_HOME%\bin\nomad.exe" -info

This test displays NOMAD general information as in Figure 2.1.

NOMAD binaries are copied during the installation. Nevertheless, information on how to re-
compile the source codes is provided in Section 4.3.1.

2.2 Mac OS X installation

For Mac OS X, open the disk image and copy the NOMAD directory into your Applications
folder. We suggest that the user chooses an installation directory with no blank space in the
name to ease the creation of environment variables. Also choose directories for which you have
the adequate write permissions.

Defining environment variables allows more convenient access to NOMAD. The first vari-
able to be defined should be $NOMAD_HOME, whose value is the path to the directory where

2.2. Mac OS X 13

Figure 2.1: Result of the installation test for Windows.

NOMAD has been installed. This variable is used by the makefiles provided in the examples and
is assumed to be defined in this document. Another environment variable to set is the $PATH
variable where $NOMAD_HOME/bin should be added. This way, you may just type nomad at the
command prompt to execute NOMAD.
Here are some examples on how to modify your environment variables according to the shell you
are using:

For bash shell, add the following lines in the file .profile located in
your home directory:
export NOMAD_HOME=YOUR_NOMAD_DIRECTORY
export PATH=$NOMAD_HOME/bin:$PATH

For csh or tcsh shell, add the following lines to the file .login:
setenv NOMAD_HOME YOUR_NOMAD_DIRECTORY
setenv $NOMAD_HOME/bin:$PATH

To activate the variables, at the command prompt, enter the command
source .profile or
source .login, or simply log out and log in.

�

Unix/Linux/Mac OS X
$NOMAD_HOME is
required for compiling
examples

Compilation of source codes is possible (but not required for basic usage) if the gcc compiler
is installed on the machine (if not, install Xcode from Apple developper Web site):

http://developer.apple.com/xcode/

14 Software installation and test

In a terminal window, do cd $NOMAD_HOME/install and execute the
./install.sh command.

This script automatically compiles the code and generates the NO-
MAD executable in $NOMAD_HOME/bin and the NOMAD library in $NO-
MAD_HOME/lib.

The script also detects if MPI is installed. If so, the parallel NOMAD
executable and library are generated in the same directories as the scalar
version.

Test the installation in a terminal window by entering:

nomad -info at the command prompt. The output of the command
should be similar than the one depicted by Figure 2.2

2.2. Mac OS X 15

> nomad -info

NOMAD - version 3.6.0 - www.gerad.ca/nomad

Copyright (C) 2001-2013 {
Mark A. Abramson - The Boeing Company
Charles Audet - Ecole Polytechnique de Montreal
Gilles Couture - Ecole Polytechnique de Montreal
John E. Dennis, Jr. - Rice University
Sebastien Le Digabel - Ecole Polytechnique de Montreal
Christophe Tribes - Ecole Polytechnique de Montreal
}

Funded in part by AFOSR and Exxon Mobil.

License : ’$NOMAD_HOME/src/lgpl.txt’
User guide: ’$NOMAD_HOME/doc/user_guide.pdf’
Examples : ’$NOMAD_HOME/examples’
Tools : ’$NOMAD_HOME/tools’

Please report bugs to nomad@gerad.ca

Run NOMAD : nomad parameters_file
Info : nomad -i
Help : nomad -h keyword(s) (or ’all’)
Developer help : nomad -d keyword(s) (or ’all’)
Version : nomad -v
Usage : nomad -u

Figure 2.2: Output obtained when testing the installation on Linux / Unix and Mac OS X.

16 Software installation and test

2.3 Unix and Linux installation

For Unix and Linux, decompress the downloaded zip file where you want to install NOMAD.

Defining environment variables allows more convenient access to NOMAD. The first vari-
able to be defined should be $NOMAD_HOME, whose value is the path to the directory where
NOMAD has been installed. This variable is used by the makefiles provided in the examples
and is assumed to be defined in this document. Another environment variable to set is the
$PATH variable where $NOMAD_HOME/bin should be added. This way, you may just type nomad
at the command prompt to execute NOMAD. Here are some examples on how to modify your
environment variables according to the shell you are using:

For bash shell, add the following lines in the file .profile located in
your home directory:
export NOMAD_HOME=YOUR_NOMAD_DIRECTORY
export PATH=$NOMAD_HOME/bin:$PATH

For csh or tcsh shell, add the following lines to the file .login:
setenv NOMAD_HOME YOUR_NOMAD_DIRECTORY
setenv $NOMAD_HOME/bin:$PATH

To activate the variables, at the command prompt, enter the command
source .profile or
source .login, or simply log out and log in.

�

Unix/Linux/Mac OS X
$NOMAD_HOME is
required for compiling
examples

Compilation of source codes must be performed to obtain NOMAD binaries (executables and
libraries).

In a terminal window, do cd $NOMAD_HOME/install and execute the
./install.sh command.

This script automatically compiles the code and generates the NOMAD
executable in $NOMAD_HOME/bin and the library in $NOMAD_HOME/lib.

The script also detects if MPI is installed. If so, the parallel NOMAD
executable and library are generated in the same directories as the scalar
version.

2.4. Matlab for Windows 17

Test the installation by entering:

nomad -info at the command prompt. The output of the command
should be similar than the content of Figure 2.2

2.4 Matlab for Windows installation

A Matlab version of NOMAD can also be downloaded at the OPTI Toolbox website. Please
note that the package contains binaries only for Windows.1

The overall installation including all OPTI provided solvers can be tested by running the test at
the command prompt. After installation is completed successfully, NOMAD can be tested alone
by typing nomad(‘-v’) or nomad(‘-info’). Please note that the version available from the
OPTI Toolbox website and from the NOMAD website may differ.

The nomad function usage is obtained by typing the command help nomad. Please note that
parameters are set using a given Matlab function called nomadset. Usage of this function
is described by typing the command help nomadset. Once parameters are set they can be
passed as an argument of the nomad function. Help on parameters can be obtained by typing
the command nomad(‘-h PARAM_NAME’). Parameters name are the same as the standalone
NOMAD version.

Three NOMAD functionalities are not available in the present Matlab version: use of categorical
variables, use of surrogates and parallel execution.

For additional information concerning installation or utilization please refer to the documentation
provided in the OPTI Toolbox package or contact us.

1It is possible to compile NOMAD binaries for Matlab on Linux or Mac OS X from NOMAD source
codes and the nomadmex.cpp main file. Thie procedure may fail due to compatibility issue from Matlab-
MEX supported and compatible compilers, and the C++ compiler installed on your machine. Please
check this issue before requesting support. For Matlab 2012a and Linux, information is provided at
http://www.mathworks.com/support/compilers/R2012a/glnxa64.html.

http://www.i2c2.aut.ac.nz/Wiki/OPTI/
http://www.mathworks.com/support/compilers/R2012a/glnxa64.html

18 Software installation and test

2.5 Installation directory

Figure 2.3 illustrates the content of the $NOMAD_HOME directory once the installation is com-
pleted.

Figure 2.3: Directory structure of the NOMAD package.

Part II

BASIC NOMAD USAGE

19

Chapter 3

Getting Started

NOMAD is an efficient tool for simulation-based design optimizations provided in the form

min
x∈Ω

f(x) (3.1)

where the feasible set Ω = {x ∈ X : cj(x) ≤ 0, j ∈ J} ⊂ Rn, f, cj : X → R ∪ {∞} for all
j ∈ J = {1, 2, . . . ,m}, and where X is a subset of Rn. The functions f and cj , j ∈ J , are
typically blackbox functions whose evaluations require computer simulation.

NOMAD can be used in two different modes: batch mode and library mode. The batch
mode is intended for a basic usage and is briefly presented in what follows (more details will be
provided in Section 4.1), while the library mode allows more flexibility and will be presented in
Section 4.3.

This chapter explains how to get started with NOMAD in batch mode. The following topics
will be covered:

• How to create a blackbox program.

• How to provide parameters for defining the problem and displaying optimization results.

• How to conduct optimization.

21

22 Getting Started

Running the examples provided during the installation requires to have a C++ compiler
installed on your machine.

Basic compilation instructions will be provided for GCC (the GNU Compiler Collection)
and for Microsoft Visual Studio 2010 (Professional or Express edition).

When using the Windows version, it is assumed that NOMAD examples are in a directory for
which the user has write permission and the path is %NOMAD_EXAMPLES%. This is obtained
during installation with default options or can be set afterwards as described in Section 2.1.

3.1 How to create blackbox programs

To conduct optimization in batch mode the users must define their separate blackbox program
coded as a stand-alone program. Blackbox program executions are managed by NOMAD with
system calls.

In what follows we use the example in the $NOMAD_HOME/examples/basic/batch/single_obj
(or %NOMAD_EXAMPLES%\examples\basic\batch\single_obj for Windows). This example
optimization problem has a single objective, 5 variables, 2 nonlinear constraints and 8 bound
constraints:

min
x∈R5

f(x) = x5

subject to



c1(x) =
5∑

i=1
(xi − 1)2 − 25 ≤ 0

c2(x) = 25−
5∑

i=1
(xi + 1)2 ≤ 0

xi ≥ −6 i = 1, 2, . . . , 5
x1 ≤ 5
x2 ≤ 6
x3 ≤ 7 .

3.1. How to create blackbox programs 23

The blackbox programs may be coded in any language (even scripts) but must respect
NOMAD format:

1. The blackbox program must be callable in a terminal window at the command prompt
and take the input vector file name as a single argument. For the example above,
the blackbox executable is bb.exe, one can execute it with the command ./bb.exe
x.txt (Linux/Unix/Mac OS X) or bb.exe x.txt (Windows). Here x.txt is a
text file containing a total of 5 values consisting of one value for each variable,
separated by space(s), tab or linebreak.

2. The blackbox program returns the evaluation values by displaying them in the stan-
dard output (default) or by writing them in an output file (see Section 6.2 about
advanced parameters). It also returns an evaluation status of 0 to indicate that
the evaluation went well. Otherwise NOMAD considers that the evaluation has failed.

3. The number of values displayed by the blackbox program corresponds to the number
of constraints plus one (or two for biobjective problems) representing the objective
function(s) that one seeks to minimize. The constraints values correspond to left-hand
side of constraints of the form cj ≤ 0 (for example, the constraint 0 ≤ x1 + x2 ≤ 10
must be displayed with the two quantities c1(x) = −x1−x2 and c2(x) = x1+x2−10).

�

Blackbox programs
must comply with
NOMAD format

The blackbox C++ program of the previous example to evaluate the objective and the two
constraints for a given design vector is given in Figure 3.1.

With GNU compiler gcc, the blackbox compilation and test are as follows:

1. Change directory to $NOMAD_HOME/examples/basic/batch/single_obj.

2. Compile the blackbox program with the following command g++ -o bb.exe bb.cpp.

3. Test the executable with the text file x.txt containing ‘0 0 0 0 0’ by entering the
command bb.exe x.txt.

4. This test should display ‘0 -20 20’, which means that the point x = (0 0 0 0 0)T has
an objective value of f(x) = 0, but is not feasible, since the second constraint is not
satisfied (c2(x) = 20 > 0).

With Microsoft Visual C++ 2010, the black box compilation and test are as follows:

1. Start theMicrosoft Visual C++ 2010 command prompt window (see in |Start Menu|Microsoft
Visual Studio 2010|).

24 Getting Started

#include <cmath>
#include <iostream>
#include <fstream>
#include <cstdlib>
using namespace std;

int main (int argc , char ** argv) {

double f = 1e20, c1 = 1e20 , c2 = 1e20;
double x[5];

if (argc >= 2) {
c1 = 0.0 , c2 = 0.0;
ifstream in (argv[1]);
for (int i = 0 ; i < 5 ; i++) {

in >> x[i];
c1 += pow (x[i]-1 , 2);
c2 += pow (x[i]+1 , 2);

}
f = x[4];
if (in.fail())

f = c1 = c2 = 1e20;
else {

c1 = c1 - 25;
c2 = 25 - c2;

}
in.close();

}
cout << f << " " << c1 << " " << c2 << endl;
return 0;

}

Figure 3.1: Example of a basic blackbox program. This code corresponds to the file bb.cpp in
$NOMAD_HOME/examples/basic/batch/single_obj.

2. Change directory to "%NOMAD_EXAMPLES%\examples\basic\batch\single_obj".

3. Compile the blackbox program with the following command cl.exe bb.cpp /EHsc.

4. Test the executable with the text file x.txt containing ‘0 0 0 0 0’, by entering the
command bb.exe x.txt.

5. This test should display ‘0 -20 20’, which means that the point x = (0 0 0 0 0)T has
an objective value of f(x) = 0, but is not feasible, since the second constraint is not
verified (c2(x) = 20 > 0).

3.1. How to create blackbox programs 25

> cd $NOMAD_HOME/examples/basic/batch/single_obj
> g++ -o bb.exe bb.cpp
> more x.txt
0 0 0 0 0
> ./bb.exe x.txt
0 -20 20

Figure 3.2: Example of a blackbox compilation and execution using GNU Compiler for $NO-
MAD_HOME/examples/basic/batch/single_obj.

Figure 3.3: Example of a blackbox compilation and execution using Microsoft Visual C++
Compiler for %NOMAD_EXAMPLES%\examples\basic\batch\single_obj.

The order of the displayed outputs must correspond to the order defined in the parameter
file (see Section 3.2). If variables have bound constraints, they must be defined in the
parameters file and should not appear in the blackbox code.

26 Getting Started

3.2 How to provide parameters

In batch mode, the parameters are provided in a text file using predefined keywords
followed by one or more argument. Here are some of the most important parameters
defining an optimization problem (without brackets):

• The number of variables (DIMENSION n).

• The name of the blackbox executable that outputs the objective and the con-
straints (BB_EXE bb_name).

• Bounds on variables are defined with the LOWER_BOUND lb and UPPER_BOUND
ub parameters.

• The output types of the blackbox executable: objective and constraints
(BB_OUTPUT_TYPE obj cons1...consM).

• A starting point (X0 x0).

• An optional stopping criterion (MAX_BB_EVAL max_bb_eval, for example). If no
stopping criterion is specified, the algorithm will stop as soon as the mesh size
reaches a given tolerance.

• Any entry on a line is ignored after the character ‘#’.

The order in which the parameters appear in the file or their case is unimpor-
tant.

Batch mode parameters
are provided in a file as
KEYWORD argument(s)

Help on parameters is accessible at the command prompt:

$NOMAD_HOME/bin/nomad -h param_name (Linux/Mac OS X/Unix).

"%NOMAD_HOME%\bin\nomad.exe" -h param_name (Windows).

The two constraints defined in the parameters file in Figure 3.4 are of different types. The
first constraint c1(x) ≤ 0 is treated by the Progressive Barrier approach (PB), which
allows constraint violations. The second constraint, c2(x) ≤ 0, is treated by the Extreme
Barrier approach (EB) that forbids violations. Hence, evaluations not satisfying extreme
barrier constraints are simply not considered when trying to improve the solution.

In the example above, the algorithmic parameters of NOMAD need not to be set because default
values are considered. This will provide the best results in most situations.

3.3. How to conduct optimization 27

DIMENSION 5 # number of variables

BB_EXE bb.exe # ‘bb.exe’ is a program that
BB_OUTPUT_TYPE OBJ PB EB # takes in argument the name of

a text file containing 5
values, and that displays 3
values that correspond to the
objective function value (OBJ),
and two constraints values g1
and g2 with g1 <= 0 and
g2 <= 0; ‘PB’ and ‘EB’
correspond to constraints that
are treated by the Progressive
and Extreme Barrier approaches
(all constraint-handling
options are described in the
detailed parameters list)

X0 (0 0 0 0 0) # starting point

LOWER_BOUND * -6 # all variables are >= -6
UPPER_BOUND (5 6 7 - -) # x_1 <= 5, x_2 <= 6, x_3 <= 7

x_4 and x_5 have no bounds

MAX_BB_EVAL 100 # the algorithm terminates when
100 blackbox evaluations have
been made

Figure 3.4: Example of a basic parameters file extracted from $NO-
MAD_HOME/examples/basic/batch/single_obj/param.txt. The comments in the file
describes some of the syntaxic rules to provide parameters.

3.3 How to conduct optimization

Optimization is conducted by starting NOMAD executable in a command window with the
parameter file name given as argument. To illustrate the execution, the example provided in
$NOMAD_HOME/examples/basic/batch/single_obj/ is considered:

$NOMAD_HOME/bin/nomad param.txt (Linux/Mac OS X/Unix)

"%NOMAD_HOME%\bin\nomad.exe" param.txt (Windows)

The outputs are provided in Figures 3.6 and 3.5.

Depending on the plateform and the compiler used, the final results for the two runs may

28 Getting Started

Figure 3.5: Output of NOMAD execution on problem %NO-
MAD_EXAMPLES%\examples\basic\batch\single_obj (Windows).

differ. This discrepancy is due to some of the default settings of NOMAD that introduce a
non-deterministic behavior but is in average good for optimization performance.

3.3. How to conduct optimization 29

> cd $NOMAD_HOME/examples/basic/batch/single_obj
> ls
bb.cpp bb.exe param.txt x.txt
> $NOMAD_HOME/bin/nomad param.txt

NOMAD - version 3.6.0 - www.gerad.ca/nomad

Copyright (C) 2001-2013 {
Mark A. Abramson - The Boeing Company
Charles Audet - Ecole Polytechnique de Montreal
Gilles Couture - Ecole Polytechnique de Montreal
John E. Dennis, Jr. - Rice University
Sebastien Le Digabel - Ecole Polytechnique de Montreal
Christophe Tribes - Ecole Polytechnique de Montreal
}

Funded in part by AFOSR and Exxon Mobil.

License : ’$NOMAD_HOME/src/lgpl.txt’
User guide: ’$NOMAD_HOME/doc/user_guide.pdf’
Examples : ’$NOMAD_HOME/examples’
Tools : ’$NOMAD_HOME/tools’

Please report bugs to nomad@gerad.ca

MADS run {

BBE (SOL) OBJ

2 (1.1000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000) 275.2281000000
3 (4.4000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000) 0.0000000000

11 (4.6750000000 0.9000000000 0.9750000000 1.5000000000 -1.5000000000) -1.5000000000
55 (1.6500000000 1.8000000000 1.9500000000 -1.5000000000 -3.0000000000) -3.0000000000

100 (1.6500000000 1.8000000000 1.9500000000 -1.5000000000 -3.0000000000) -3.0000000000

} end of run (max number of blackbox evaluations)

blackbox evaluations : 100
best infeasible solution: (1.65 1.8 2.6 -1.5 -3) h=0.8725 f=-3
best feasible solution : (1.65 1.8 1.95 -1.5 -3) h=0 f=-3

Figure 3.6: Output of NOMAD execution on problem $NO-
MAD_HOME/examples/basic/batch/single_obj (Linux/Mac OS X/Unix).

Chapter 4

How to use NOMAD

This chapter describes how to use NOMAD for solving blackbox optimization problems. Func-
tionalities of NOMAD that are considered more advanced such as biobjective optimization,
categorical variables, sensitivity analysis and parallel modes are presented in Chapter 7.

New users are encouraged to first read the Getting Started chapter to understand the basics
of NOMAD utilization.

Many examples are provided in $NOMAD_HOME/examples with typical optimization outputs.

Batch mode is presented first, followed by a description of the basic parameters to setup and
solve the majority of optimization problems that NOMAD can handle. The library mode is
described in Section 4.3.

NOMAD should be cited with references [5, 50]. Other relevant papers by the developers are
accessible through the NOMAD website www.gerad.ca/nomad.

31

http://www.gerad.ca/nomad

32 How to use NOMAD

4.1 Optimization in batch mode

The batch mode allows to separate the evaluation of the objectives and constraints by the
blackbox program from NOMAD executable. This mode has the advantage that if your blackbox
program crashes, it will not affect NOMAD: The point that caused this crash will simply be
tagged as a blackbox failure.

Handling crashes in library mode requires special attention to isolate the part of code that
may generate crashes. And, in general, using the library mode will require more computer
programming than the batch mode. However, the library mode offers more options and flexibility
for blackbox integration and management of optimization (see Section 4.3).

The different steps for solving your problem in batch mode are:

1. Create a directory for your problem. The problem directory is where the NOMAD com-
mand is executed. It is a convenient place to put the blackbox executable, the parameters
file and the output files, but those locations can be customized.

2. Create your blackbox evaluation, which corresponds to a program (a binary executable or
a script). This program can be located in the problem directory or not. This program
outputs the objectives and the constraints for a given design vector. If you already have a
blackbox program in a certain format, you need to interface it with a wrapper program to
match the NOMAD specifications (see Section 3.1 for blackbox basics and Section 4.2.1
for more details).

3. Create a parameters file, for example param.txt. This file can be located in the problem
directory or not (see Section 4.2 for more details).

4. In the problem directory, start the optimization with a command like
$NOMAD_HOME/bin/nomad param.txt (Linux/Mac OS X/Unix) or
"%NOMAD_HOME%\bin\nomad.exe" param.txt (Windows).

4.2 Basic parameters description

This section describes the basic parameters for the optimization problem definition, the algo-
rithmic parameters and the parameters to manage output information. Additional information
can be obtained by executing the command

$NOMAD_HOME/bin/nomad -h (Linux/Mac OS X/Unix) or
"%NOMAD_HOME%\bin\nomad.exe" -h (Windows), to see all parameters, or
$NOMAD_HOME/bin/nomad -h PARAM_NAME (Linux/Mac OS X/Unix) or
"%NOMAD_HOME%\bin\nomad.exe" -h PARAM_NAME (Windows) for a particular parameter.

4.2. Basic parameters description 33

The remaining content of a line is ignored after the character ‘#’. Except for the file names, all
strings and parameter names are case insensitive (DIMENSION 2 is the same as Dimension 2).
File names refer to files in the problem directory. To indicate a file name containing spaces, use
quotes ("name" or ‘name’). These names may include directory information relatively to the
problem directory. The problem directory will be added to the names, unless the ‘$’ character
is used in front of the names. For example, if a blackbox executable is run by the command
python script.py, define parameter BB_EXE $python script.py.

Some parameters consists of a list of variable indices taken from 0 to n − 1 (where n is the
number of variables). Variable indices may be entered individually or as a range with format
‘i-j’. Character ‘*’ may be used to replace 0 to n− 1. Other parameters require arguments
of type boolean: these values may be entered with the strings yes, no, y, n, 0, or 1. Finally,
some parameters need vectors as arguments, use (v1 v2 ... vn) for those. Characters ‘-’,
‘inf’, ‘-inf’ or ‘+inf’ are accepted to enter undefined real values (NOMAD considers ±∞
as an undefined value).

Parameters are classified into problem, algorithmic and output parameters, and provided in
what follows. Additional information about parameters and algorithms are provided in Subsec-
tion 4.2.1. The advanced parameters and special functionalities of NOMAD are presented in
Chapters 6 and 7.

Problem parameters

name arguments description default
BB_EXE list of strings; see 4.2.1 blackbox executables (required

in batch mode)
none

BB_INPUT_TYPE see 4.2.1 blackbox input types * R (all real)
BB_OUTPUT_TYPE see 4.2.1 blackbox output types (re-

quired)
none

DIMENSION integer n the number of variables (re-
quired, n ≤ 1000)

none

LOWER_BOUND see 4.2.1 lower bounds none
UPPER_BOUND see 4.2.1 upper bounds none

34 How to use NOMAD

Algorithmic parameters

name arguments description default
DIRECTION_TYPE see 4.2.1 type of directions for the poll ORTHO
F_TARGET reals, f or (f1 f2) NOMAD terminates if fi(xk) ≤

fi for all objective functions
none

INITIAL_MESH_SIZE see 4.2.1 ∆m
0 [18] r0.1 or based

on X0
LH_SEARCH 2 integers: p0 and pi LH (Latin-Hypercube)

search (p0: initial, pi: it-
erative); see 4.2.1 (7.2 for
biobjective)

none

MAX_BB_EVAL integer maximum number of blackbox
evaluations; see 7.2 for biobjec-
tive

none

MAX_TIME integer maximum wall-clock time (in
seconds)

none

TMP_DIR string temporary directory for black-
box i/o files; see 4.2.1

problem direc-
tory

X0 see 4.2.1 starting point(s) best point
from a cache
file or from
an initial LH
search

Output parameters

name arguments description default
CACHE_FILE string cache file; if the file does not exist, it

will be created
none

DISPLAY_ALL_EVAL bool if yes all points are displayed with DIS-
PLAY_STATS and STATS_FILE

no

DISPLAY_DEGREE integer in [0; 2] or a string
with four digits; see 4.2.1

0: no display; 2: full display 1

DISPLAY_STATS list of strings what informations is displayed at each
success; see 4.2.1

see 4.2.1

HISTORY_FILE string file containing all trial points with for-
mat (x1 x2 ... xn) on each line;
includes multiple evaluations

none

SOLUTION_FILE string file to save the current best feasible
point

none

STATS_FILE a string file_name plus a
list of strings

the same as DISPLAY_STATS but for a
display into file file_name

none

4.2. Basic parameters description 35

4.2.1 Additional information for some parameters

Parameters BB_OUTPUT_TYPE and BB_EXE

In batch mode, BB_EXE indicates the names of the blackbox executables.

A single string may be given if a single blackbox is used and gives several outputs. It is also
possible to indicate several blackbox executables.

A blackbox program can return more than one function (BB_OUTPUT_TYPE):

BB_EXE bb.exe # defines that ‘bb.exe’ is an
BB_OUTPUT_TYPE OBJ EB EB # executable with 3 outputs

A mapping between the names of the blackbox programs and the BB_OUTPUT_TYPE may be
established to identify which function is returned by which blackbox:

BB_EXE bb1.exe bb2.exe # defines two blackboxes
BB_OUTPUT_TYPE OBJ EB # ‘bb1.exe’ and ‘bb2.exe’

with one output each

Blackbox program names can be repeated to establish more complex mapping:

BB_EXE bb1.exe bb2.exe bb2.exe # defines TWO blackboxes
NO duplication if names are repeated

BB_OUTPUT_TYPE EB OBJ PB # bb1.exe has one output
bb2.exe has two outputs
bb1.exe is executed first.
#!!! If EB constraint is feasible then
#!!! bb2.exe is executed.
#!!! If EB constraint not feasible then
#!!! bb2.exe is not launched.

36 How to use NOMAD

The management of blackbox program path containing spaces can be done using special char-
acter ‘$’:

BB_EXE "dir $with $spaces/bb.exe" # use ‘$’ to describe a
path with spaces

BB_EXE "$python bb.py" # the blackbox is a python
script: it is run with
command
‘python PROBLEM_DIR/bb.py’

BB_EXE "$nice bb.exe" # to run bb.exe
in nice mode on X systems

Blackbox input parameter BB_INPUT_TYPE

This parameter indicates the types of each variable. It may be defined once with a list of n
input types with format (t1 t2 ... tn) or several times with index ranges and input types.
Input types are values in {R, C, B, I} or {Real, Cat, Bin, Int}. R is for real/continuous
variables, C for categorical variable, B for binary variables, and I for integer variables. The
default type is R.

For categorical variables (mixed integer variable) please refer to Section 7.1.

Blackbox output parameter BB_OUTPUT_TYPE

This parameter characterizes the values supplied by the blackbox, and in particular tells how
constraint values are to be treated. The arguments are a list of m types, where m is the num-
ber of outputs of the blackbox. At least one of these values must correspond to the objective
function that NOMAD minimizes. If two outputs are tagged as objectives, then the BiMADS
algorithm will be executed. Other values typically are constraints of the form cj(x) ≤ 0, and
the blackbox must display the left-hand side of the constraint with this format.

4.2. Basic parameters description 37

A terminology is used to describe the different types of constraints [20]:

EB constraints correspond to constraints that need to be always satisfied (unrelaxable
constraints). The technique used to deal with those is the Extreme Barrier
approach, consisting in simply rejecting the infeasible points.

PB, PEB, and F constraints correspond to constraints that need to be satisfied only
at the solution, and not necessarily at intermediate points (relaxable constraints).
More precisely, F constraints are treated with the Filter approach [17], and PB
constraints are treated with the Progressive Barrier approach [20]. PEB con-
straints are treated first with the Progressive Barrier, and once satisfied, with
the Extreme Barrier [22].

There may be another type of constraints, the hidden constraints, but these only
appear inside the blackbox during an execution, and thus they cannot be indicated in
advance to NOMAD (when such a constraint is violated, the evaluation simply fails
and the point is not considered).

If the user is not sure about the nature of its constraints, we suggest using the keyword
CSTR, which correspond by default to PB constraints.

There may be other types of outputs. All the types are:
CNT_EVAL Must be 0 or 1: count or not the blackbox evaluation

EB Constraint treated with Extreme Barrier
(infeasible points are ignored).

F Constraint treated with Filter approach [17].
NOTHING or - The output is ignored.

OBJ Objective value to be minimized.
PB or CSTR Constraint treated with Progressive Barrier [20].

PEB Hybrid constraint PB/EB [22].
STAT_AVG Average of this value will be computed for all blackbox calls

(must be unique).
STAT_SUM Sum of this value will be computed for all blackbox calls

(must be unique).

Please note that F constraints are not compatible with CSTR, PB or PEB. However, EB can be
combined with F, CSTR, PB or PEB.

38 How to use NOMAD

Bound parameters LOWER_BOUND and UPPER_BOUND

Parameters LOWER_BOUND and UPPER_BOUND are used to define bounds on variables. For exam-
ple, with n = 7,

LOWER_BOUND 0-2 -5.0
LOWER_BOUND 3 0.0
LOWER_BOUND 5-6 -4.0
UPPER_BOUND 0-5 8.0

is equivalent to

LOWER_BOUND (-5 -5 -5 0 - -4 -4) # ‘-’ or ‘-inf’ means that x_4
has no lower bound

UPPER_BOUND (8 8 8 8 8 8 inf) # ‘-’ or ‘inf’ or ‘+inf’ means
that x_6 has no upper bound.

Each of these two sequences define the following bounds



−5 ≤ x1 ≤ 8
−5 ≤ x2 ≤ 8
−5 ≤ x3 ≤ 8

0 ≤ x4 ≤ 8
x5 ≤ 8

−4 ≤ x6 ≤ 8
−4 ≤ x7 .

Direction type parameter DIRECTION_TYPE

The types of direction correspond to the arguments of parameters DIRECTION_TYPE. Up to 4
strings may be employed to describe one direction type.

These 4 strings are s1 in {ORTHO,LT,GPS}, s2 in {∅,1,2,N+1,2N}, s3 in {∅,STATIC,RANDOM,
QUAD,NEG}, and s4 in {∅,UNIFORM}. If only 1,2 or 3 strings are given, defaults are considered
for the others. Combination of these strings may describe the following 16 direction types:

4.2. Basic parameters description 39

s1 s2 s3 s4 direction types
1 ORTHO 1 OrthoMADS, 1.
2 ORTHO 2 OrthoMADS, 2.
3 ORTHO OrthoMADS, n+1, quad model for (n+1)th dir.
3 ORTHO N+1 OrthoMADS, n+1, quad model for (n+1)th dir.
3 ORTHO N+1 QUAD OrthoMADS, n+1, quad model for (n+1)th dir.
4 ORTHO N+1 NEG OrthoMADS, n+1, (n+1)th dir=-sum n first dirs.
5 ORTHO 2N OrthoMADS, 2n.
6 LT 1 LT-MADS, 1.
7 LT 2 LT-MADS, 2.
8 LT N+1 LT-MADS, n+1.
9 LT LT-MADS, 2n.
9 LT 2N LT-MADS, 2n.

10 GPS BIN GPS for binary variables.
11 GPS N+1 GPS, n+1, static.
11 GPS N+1 STATIC GPS, n+1, static.
12 GPS N+1 STATIC UNIFORM GPS, n+1, static, uniform angles.
13 GPS N+1 RAND GPS, n+1, random.
14 GPS N+1 RAND UNIFORM GPS, n+1, random, uniform angles.
15 GPS GPS, 2n, static.
15 GPS 2N GPS, 2n, static.
15 GPS 2N STATIC GPS, 2n, static.
16 GPS 2N RAND GPS, 2n, random.

GPS directions correspond to the coordinate directions. LT and ORTHO directions correspond to
the implementations LT-MADS [18] and OrthoMADS [8] of MADS. The integer indicated
after GPS, LT and ORTHO corresponds to the number of directions that are generated at each poll.
The 16 different direction types may be chosen together by specifying DIRECTION_TYPE several
times. If nothing indicated, ORTHO is considered for the primary poll, and default direction types
for the secondary poll are ORTHO 1 or 2, LT 1 or 2, and GPS N+1 STATIC depending on the
value of DIRECTION_TYPE.

Output parameters DISPLAY_DEGREE

Four different levels of display can be set via the parameter DISPLAY_DEGREE, and these levels
may be set differently for four different sections of the algorithm (general displays, search and
poll displays and displays for each iteration data). The four different levels can be entered with
an integer in [0; 3], but also with the strings NO_DISPLAY, MINIMAL_DISPLAY, NORMAL_DISPLAY,
or FULL_DISPLAY. If the maximum level of display is set, then the algorithm informations are
displayed within indented blocks. These blocks ease the interpretation of the algorithm logs
when read from a text editor.

40 How to use NOMAD

Output parameters DISPLAY_STATS and STATS_FILE

These parameters display information each time a new feasible incumbent is found. DIS-
PLAY_STATS displays at the standard output and STATS_FILE writes a file. These parameters
need a list of strings as argument, without any quotes. These strings may include the following
keywords:

BBE Blackbox evaluations.
BBO Blackbox outputs.

EVAL Evaluations (includes cache hits).
MESH_INDEX Mesh index ` [8].
MESH_SIZE Mesh size parameter ∆m

k [18].
OBJ Objective function value.

POLL_SIZE Poll size parameter ∆p
k [18].

SGTE Number of surrogate evaluations.
SIM_BBE Simulated blackbox evaluations (includes initial cache hits).

SOL Solution, with format iSOLj where i and j are two (optional)
strings: i will be displayed before each coordinate, and j after
each coordinate (except the last).

STAT_AVG The AVG statistic (argument STAT_AVG of BB_OUTPUT_TYPE).
STAT_SUM The SUM statistic defined by argument STAT_SUM for parameter

BB_OUTPUT_TYPE.
TIME Wall-clock time.
VARi Value of variable i. The index 0 corresponds to the first variable.

In addition, all outputs may be formatted using the C style. Possibilities and examples are shown
in the following table:

%e Scientific notation (mantise/exponent) using e character.
%E Scientific notation (mantise/exponent) using E character.
%f Decimal floating point.
%g Use the shorter of %e or %f.
%G Use the shorter of %E or %f.

%d or i Integer rounded value.

The number of columns (width) and the precision may also be indicated using also the C style
as in the following examples:

4.2. Basic parameters description 41

format width precision
%f auto auto

%5.4f 5 4
%5f 5 auto

%.4f auto 4
%.f auto 0

For example,
DISPLAY_STATS BBE & ($SOL,) & OBJ
displays lines similar to
1 & (10.34 , 5.58) & -703.4734809
which may be copied into LATEX tables.

The same example with
DISPLAY_STATS BBE & ($%5.1fSOL,) & $%.2EOBJ$
gives
1 & ($ 10.3$, $ 5.6$) & $-7.03E+02$.

In case the user wants to explicitely display the % character, it must be entered using \%.

Default values are DISPLAY_STATS BBE OBJ and DISPLAY_STATS OBJ for single and biobjective
optimization, respectively (there is no need to enter OBJ twice in order for the two objective
values to be displayed).

To write these outputs into the file output.txt, simply add the file name as first argument of
STATS_FILE:
STATS_FILE output.txt BBE (SOL) OBJ.

Mesh and poll size parameters

The initial mesh size parameter ∆m
0 [18] is decided by INITIAL_MESH_SIZE. In order to achieve

the scaling between variables, NOMAD considers the mesh size parameter for each variable.
INITIAL_MESH_SIZE may be entered with the following formats:

• INITIAL_MESH_SIZE d0 (same initial mesh size for all variables)

• INITIAL_MESH_SIZE (d0 d1 ... dn-1) (for all variables ‘-’ may be used, and de-
faults will be considered)

• INITIAL_MESH_SIZE i d0 (initial mesh size provided for variable i only)

42 How to use NOMAD

• INITIAL_MESH_SIZE i-j d0 (initial mesh size provided for variables i to j)

Note that a more explicit scaling method is available with the advanced parameter SCALING
(see Section 6.2).

Latin Hypercube search LH_SEARCH

When using Latin Hypercube (LH) search (LH_SEARCH p_0 p_1 with p_0 or p_1 different
than zero) for single-objective optimization, p_0 and p_1 correspond to the initial number of
search points and to the number of search points at each iteration, respectively. For biobjective
optimization this has a slightly different meaning (see Section 7.2)

Temporary directory parameter TMP_DIR

If NOMAD is installed on a network file system, with the batch mode use, the cost of read/write
files will be high if no local temporary directory is defined. On Linux/Unix/Mac OS X systems,
the directory /tmp is local and we advise the user to define TMP_DIR /tmp.

Starting point parameter X0

Parameter X0 indicates the starting point of the algorithm. Several starting points may be
proposed by entering this parameter several times. If no starting point is indicated, NOMAD
considers the best evaluated point from an existing cache file (parameter CACHE_FILE) or from
an initial Latin-Hypercube search (argument p0 of LH_SEARCH).

The X0 parameter may take several types of arguments:

• A string indicating an existing cache file, containing several points (they can be already
evaluated or not). This file may be the same as the one indicated with CACHE_FILE. If
so, this file will be updated during the program execution, otherwise the file will not be
modified.

• A string indicating a text file containing the coordinates of one or several points (values
are separated by spaces or line breaks).

• n real values with format (v0 v1 ... vn-1).

• X0 keyword plus integer(s) and one real:

X0 i v: (i+1)th coordinate set to v.

X0 i-j v: coordinates i to j set to v.

X0 * v: all coordinates set to v.

4.3. Optimization in library mode 43

• One integer, another integer (or index range) and one real: the same as above except that
the first integer k refers to the (k+1)th starting point.

The following example with n = 3 corresponds to the two starting points (5 0 0) and (−5 1 1):

X0 * 0.0
X0 0 5.0
X0 1 * 1.0
X0 1 0 -5.0

4.3 Optimization in library mode

The library mode allows to tailor the evaluation of the objectives and constraints within a
specialized executable that contains NOMAD static library. For example, it is possible to link
your own codes with the NOMAD library (provided during installation) in a single executable
that can define and run optimization for your problem. Contrary to the batch mode, this has
the disadvantage that a crash within the executable will end it. But, as a counterpart, it offers
more options and flexibility for blackbox integration and optimization management (display, pre-
and post-processing, multiple optimizations, user search, etc.).

The library mode requires additional coding and compilation before conducting optimization.
First, we will briefly review the compilation of source codes to obtain NOMAD binaries (exe-
cutable and static library) and how to use static library. Then, details on how to interface your
own codes are presented.

4.3.1 Compilation of the source code

NOMAD source codes provided during installation are located in $NOMAD_HOME/src (Unix/
Linux/Mac OS X) or in %NOMAD_EXAMPLES%\VisualStudio2010\src (Windows). In what
follows it is supposed that you have a write access to the source codes directory. If it is not the
case, please consider making a copy in a more convenient location.

For Unix, Linux and Mac OS X, we suggest a compilation procedure using the makefiles
provided along with the sources. The makefiles are for GNU gcc compiler and may need
some modifications depending on your system (C++ compiler and make version). Enter the
command make all from a terminal opened in directory $NOMAD_HOME/src. This will create

44 How to use NOMAD

the executable file nomad located in $NOMAD_HOME/bin and the static library file nomad.a in
$NOMAD_HOME/lib. If the make command fails, try gmake instead of make.

For Windows, a console application project for Microsoft Visual C++ (2010) (professional
or express edition are supposed to be available) is provided for convenience. First, double-
click on the %NOMAD_EXAMPLES%\VisualStudio2010\nomad.sln (Microsoft Visual Stu-
dio Solution). In the menu Debug (express edition) on in the menu Build (professional)
click on Build Solution. This will create nomad.exe and nomad.lib in the
%NOMAD_EXAMPLES%\VisualStudio2010\bin and ...\lib directories.

Windows users can also perform compilation using the MinGW environment. In this case, the
same makefiles as for Unix, Linux and Mac OS X can be used within a MSYS shell window.

4.3.2 Using NOMAD static library

Using the NOMAD routines that are in the pre-compiled NOMAD static library with a C++ pro-
gram requires building an executable. This is illustrated on the example located in the directory
$NOMAD_HOME/examples/basic/library/single_obj
or in
%NOMAD_EXAMPLES%\examples\basic\library\single_obj.
It is identical to the example shown in Chapter 3, except that no temporary files are used,
and no system calls are made. For this example, just one C++ source file is used, but there
could be a lot more. Other examples can be found in $NOMAD_HOME/examples or in %NO-
MAD_EXAMPLES%\examples.

Building with Microsoft Visual C++ (2010)

The example is provided as the basic_lib_single_obj project in the nomad solution. First,
you must build the nomad solution as described before to create NOMAD static library. Then,
to build the example, right-click on the basic_lib_single_obj project in the solution explorer
and select build. The resulting executable is located in
%NOMAD_EXAMPLES%\examples\basic\library\single_obj. Execution can be started within
Visual Studio (professional edition only) or in command shell and will produce the result given
in Figure 4.1.

New users of Microsoft Visual C++ (2010) are encouraged to get familiar with the software
application first and than create their own project based on the example provided. Please
note that important properties can be modified by right-clicking on a project and selecting
Properties.

4.3. Optimization in library mode 45

Figure 4.1: Outputs obtained for %NOMAD_EXAMPLES%\examples\basic\library\single_obj
(Windows).

Building with makefile

It is supposed that the environment variable $NOMAD_HOME is defined and NOMAD static library
is in $NOMAD_HOME/lib. If not, the installation directory of NOMAD must be modified in the
makefile. Explanations are given for GNU C++ compiler gcc. A basic knowledge of object
oriented programmation with C++ is assumed.

Let us first try to compile the basic example. In a terminal, change directory to
$NOMAD_HOME/examples/basic/library/single_obj
and type make. The outputs for this examples are given in Figure 4.2

As a first task to create your own executable, a makefile needs to be created for your source
code(s). The makefile for the basic example is shown on Figure 4.3. Notice that each line after
the symbol ‘:’ has to begin with a tabulation. Such makefiles are given at various places inside
the examples directory.

4.3.3 Definition of the blackbox evaluation

We now describe the other steps required for the creation of the source file (let us call it
basic_lib.cpp), which includes the header file nomad.hpp, and which is divided into two
parts: a class for the description of the problem, and the main function. Once compiled with
the makefile (type make for Linux/Unix/Mac OS X) or with build command in Visual Studio
C++ (2010), the binary file (let us call it basic_lib.exe) is created and can be executed.

The use of standard C++ types for reals and vectors is of course allowed within your code, but

46 How to use NOMAD

> cd $NOMAD_HOME/examples/basic/library/single_obj
> make

building the scalar version ...
exe file : basic_lib.exe

> ls
basic_lib.cpp basic_lib.exe basic_lib.o makefile
> ./basics_lib.exe
-bash: ./basics_lib.exe: Aucun fichier ou dossier de ce type
> ./basic_lib.exe

MADS run {

BBE (SOL) OBJ

2 (1.1000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000) 275.2281000000
3 (4.4000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000) 0.0000000000

11 (4.6750000000 0.9000000000 0.9750000000 1.5000000000 -1.5000000000) -1.5000000000
55 (1.6500000000 1.8000000000 1.9500000000 -1.5000000000 -3.0000000000) -3.0000000000

100 (1.6500000000 1.8000000000 1.9500000000 -1.5000000000 -3.0000000000) -3.0000000000

} end of run (max number of blackbox evaluations)

blackbox evaluations : 100
best infeasible solution: (0.55 1.8 2.6 -1.5 -3) h=0.6525 f=-3
best feasible solution : (1.65 1.8 1.95 -1.5 -3) h=0 f=-3

Figure 4.2: Outputs obtained for $NOMAD_HOME/examples/basic/library/single_obj
(Linux).

it is suggested that you use the NOMAD types as much as possible. For reals, NOMAD uses
the class NOMAD::Double, and for vectors, the class NOMAD::Point. A lot of functionalities
have been coded for theses classes, which are visible in files Double.hpp and Point.hpp. All
NOMAD class files are named like the classes and are located in the directory $NOMAD_HOME/src.
Other NOMAD types (essentially enumeration types) are also defined in defines.hpp. Some
utility functions on these types can be found in utils.hpp. The namespace NOMAD is used for
all NOMAD types, and you must type NOMAD:: in front of all types unless you type using
namespace NOMAD; at the beginning of your program.

Providing the blackbox evaluation of objective and constraints directly in the code avoids the
use of temporary files and system calls by the algorithm. This is achieved by defining a derived
class (let us call it My_Evaluator) that inherits from the class NOMAD::Evaluator in single-
objective optimization and from NOMAD::Multi_Obj_Evaluator in multi-objective mode (see
header files Evaluator.hpp and Multi_Obj_Evaluator.hpp). An example of such a class is
shown in Figure 4.5.

4.3. Optimization in library mode 47

EXE = basic_lib.exe
COMPILATOR = g++
OPTIONS = -ansi -pedantic -O3
L1 = $(NOMAD_HOME)/lib/nomad.a
LIBS = $(L1) -lc -lm
INCLUDE = -I$(NOMAD_HOME)/src -I.
COMPILE = $(COMPILATOR) $(OPTIONS) $(INCLUDE) -c
OBJS = basic_lib.o

$(EXE): $(OBJS)
$(COMPILATOR) -o $(EXE) $(OBJS) $(LIBS) $(OPTIONS)

basic_lib.o: basic_lib.cpp $(L1)
$(COMPILE) basic_lib.cpp

clean:
@echo " cleaning obj files"
@rm -f $(OBJS)

Figure 4.3: Example of a makefile for a single C++ file linked with the NOMAD library.

The blackbox evaluation is programmed in a user-defined class. The objective of this user
class is to redefine the virtual method NOMAD::Evaluator::eval_x() that will be auto-
matically called by the algorithm.

The prototype of eval_x() is given in Figure 4.4. Note that const and non-const versions
of the method are available. The function eval_x() should return true if the evaluation
succeeded, and false if the evaluation failed.

bool eval_x (NOMAD::Eval_Point & x ,
const NOMAD::Double & h_max ,
bool & count_eval) const;

Figure 4.4: Prototype of method NOMAD::Evaluator::eval_x(). A non-const version is also
available.

48 How to use NOMAD

The argument x (in/out) corresponds to an evaluation point, i.e. a vector containing the co-
ordinates of the point to be evaluated, and also the result of the evaluation. The coordinates
are accessed with the operator [] (x[0] for the first coordinate) and outputs are set with the
method NOMAD::Eval_Point::set_bb_output() (x.set_bb_output(0,v) to set the objec-
tive function value to v if the objective has been defined at the first position). Constraints must
be represented by values cj for a constraint cj ≤ 0. Please refer to files Eval_Point.hpp and
Point.hpp for details about the classes defining NOMAD vectors.

The second argument, the real h_max (in), corresponds to the current value of the barrier hmax

parameter. It is not used in this example but it may be used to interrupt an expensive evaluation
if the constraint violation value h grows larger than hmax. See [20] for the definition of h and
hmax and of the Progressive Barrier method for handling constraints. Please refer to
Section 6.1 for description of parameters hmax and hmin.

The third argument, count_eval (out), needs to be set to true if the evaluation counts as
a blackbox evaluation, and false otherwise (for example, if the user interrupts an evaluation
with the hmax criterion before it costs some expensive computations, then set count_eval to
false).

Finally, note that the call to eval_x() inside the NOMAD code is inserted into a try block.
This means that if an error is detected inside the eval_x() function, an exception should be
thrown. The choice for the type of this exception is left to the user, but NOMAD::Exception is
available (see Exception.*pp). If an exception is thrown by the user-defined function, then the
associated evaluation is tagged as a failure and not counted unless the user explicitely set the
flag count_eval to true. Additionnaly, the user-defined function can test on whether CTRL-C
has been pressed by using the method NOMAD::Evaluator::get_force_quit(). This allows
managing the termination of a costly black-box evaluation whithin eval_x().

The virtual method NOMAD::Evaluator::update_success() can also be subclassed in the
My_Evaluator class. The corresponding derived method will be automatically invoked every
time a new improvement is made. Note that the automatic calls to this method can be en-
abled/disabled with NOMAD::Evaluator_Control::set_call_user_update_success().

4.3.4 The main function

Once your problem has been defined, the main function can be written. NOMAD routines
may throw C++ exceptions, so it is recommended that you put your code into a try block. In
addition, functions NOMAD::begin() and NOMAD::end() must be called at the beginning and
at the end of the main function. NOMAD::Slave::stop_slaves() has also to be called at the

4.3. Optimization in library mode 49

class My_Evaluator : public NOMAD::Evaluator {
public:

My_Evaluator (const NOMAD::Parameters & p) :
NOMAD::Evaluator (p) {}

~My_Evaluator (void) {}

bool eval_x (NOMAD::Eval_Point & x ,
const NOMAD::Double & h_max ,
bool & count_eval) const {

NOMAD::Double c1 = 0.0 , c2 = 0.0;
for (int i = 0 ; i < 5 ; i++) {

c1 += (x[i]-1).pow2();
c2 += (x[i]+1).pow2();

}
x.set_bb_output (0 , x[4]); // objective value
x.set_bb_output (1 , c1-25); // constraint 1
x.set_bb_output (2 , 25-c2); // constraint 2

count_eval = true; // count a blackbox evaluation
return true; // the evaluation succeeded

}
};

Figure 4.5: Example of a user class defining a hard-coded blackbox evaluation.

end of the main function if parallelism is used.

Setting parameters

In library mode, the main function must declare a NOMAD::Parameters object. Parameter
names are the same as in batch mode but may be defined programmatically. A parameter
PNAME is set with the method NOMAD::Parameters::set_PNAME(). In library mode, param-

eter PNAME is set with
set_PNAME().

In order to see all the options attached to a parameter PNAME, use the help
$NOMAD_HOME/bin/nomad -h PNAME (Linux/Unix/Mac OS X) or
"%NOMAD_HOME%\bin\nomad.exe" -h PNAME (Windows) or
refer to the list of parameters in Sections 4.2 and 6.1, or to the header file Parameters.hpp.

50 How to use NOMAD

In library mode it is also possible to provide the parameters by reading from a file, with NO-
MAD::Parameters::read("param.txt") where param.txt is a valid parameters file. If a
directory path is included in the name of the file, this path will be considered as the prob-
lem path instead of the default location ‘./’. To display the parameters described by a NO-
MAD::Parameters object p, use the instruction cout « p « endl;.

NOMAD types can be used as arguments of NOMAD::Parameters functions. An example is
given in Figure 4.6. This example is taken from file basic_lib.cpp located in
$NOMAD_HOME/examples/basic/library/single_obj and corresponds to the same parame-
ters as given in Figure 3.4 except for BB_EXE which is not required.

Once that all parameters are set, the method NOMAD::Parameters::check() must be
invoked to validate the parameters. The algorithm will not run with a non-checked NO-
MAD::Parameters object.

If parameters are changed after a first check, check() must be invoked again before a new
run can be conducted. Notice that the call to check() may be bypassed by using NO-
MAD::Parameters::force_check_flag() but only advanced users should use it.

Evaluator declaration and algorithm run

The MADS algorithm is implemented in the NOMAD::Mads class. Objects of this class are
created with a NOMAD::Parameters object and an NOMAD::Evaluator object as arguments.

Once the NOMAD::Mads object is declared, run the algorithm with NOMAD::Mads::run()
(or NOMAD::Mads::multi_run() for multi-objective optimization). An example is shown
in Figure 4.7.

In the example described in Figure 4.7, the NOMAD::Evaluator object corresponds to an object
of type My_Evaluator. A NULL pointer may also be used instead of the NOMAD::Evaluator
object: in this case, the default evaluator will be used. Assuming that the parameter BB_EXE has
been defined, this default evaluator consists in evaluating the objective function via a separated
blackbox program and system calls. When an NOMAD::Evaluator object is used, parameters
BB_EXE and SGTE_EXE are ignored. A more advanced NOMAD::Mads constructor with user-
created caches is also available in $NOMAD_HOME/src/Mads.hpp.

4.3. Optimization in library mode 51

Access to solution and optimization data

In the example of $NOMAD_HOME/examples/basic/library/single_obj, final information is
displayed via a call to the operator « at the end of NOMAD::Mads::run(). More specialized
access to solution and optimization data is allowed.

To access the best feasible and infeasible points, use the methods NOMAD::Mads::get_best-
_feasible() and NOMAD::Mads::get_best_infeasible(). To access optimization data
or statistics, call the method NOMAD::Mads::get_stats() which returns access to a NO-
MAD::Stats object. Then, use the access methods defined in Stats.hpp. For example, to
display the number of blackbox evaluations, write:

cout << "bb eval = " << mads.get_stats().get_bb_eval() << endl;

4.3.5 Other functionalities of the library mode

Automatic calls to user-defined functions

Virtual methods are automatically invoked by NOMAD at some special events of the algo-
rithm. These methods are left empty by default and you may redefine them so that your own
code is automatically called. These virtual methods are defined in the NOMAD::Evaluator and
NOMAD::Multi_Obj_Evaluator classes and are detailed below:

• NOMAD::Evaluator::list_of_points_preprocessing(): Called before the evaluation
of a list of points (it allows the user to pre-process the points to be evaluated). See
$NOMAD_HOME/src/Evaluator.hpp for the header of this method.

• NOMAD::Evaluator::update_iteration(): Invoked every time a MADS iteration is
terminated.

• NOMAD::Evaluator::update_success(): Invoked when a new incumbent is found (single-
objective) or when a new Pareto point is found (biobjective).

• NOMAD::Multi_Obj_Evaluator::update_mads_run(): For biobjective problems, this
method is called every time a single MADS run is terminated.

It is possible to disable the automatic calls to these methods, with the functions NOMAD::Mads::
enable_user_calls() and NOMAD::Mads::disable_user_calls(), or with the parameters

52 How to use NOMAD

USER_ CALLS_ENABLED and EXTENDED_POLL_ENABLED. These parameters are automatically set
to yes, except during the extended poll for categorical variables and during the VNS search.

Multiple runs

The method NOMAD::Mads::run() may be invoked more than once, for multiple runs of the
MADS algorithm.

A simple solution for doing that is to declare the NOMAD::Mads object, as in Figure 4.8. But,
in this case, the cache, containing all points from the first run, will be erased between the runs
(since its it created and deleted with NOMAD::Mads objects).

Another solution consists in using the NOMAD::Mads::reset() method between consecutive
runs and to keep the NOMAD::Mads object in a more global scope. The method takes two
boolean arguments (set to false by default), keep_barriers and keep_stats, indicating if
the barriers (true and surrogate) and statistics must be reseted between the two runs. An
example is shown in Figure 4.9.

Examples showing multiple MADS runs are provided in the $NO-
MAD_HOME/examples/advanced/restart and $NOMAD_HOME/examples/advanced/-
multi_start directories. The multistart program launches multiple instances of MADS
with different starting points from a Latin-Hypercube sampling.

4.4 Interface examples

Blackbox evaluations programs can be in different format. The example directory $NOMAD_HOME
/examples/interfaces illustrates how to interface NOMAD in the following cases:

• AMPL: The interface to the AMPL format uses a library developed by Dominique Orban
and available at www.gerad.ca/∼orban/LibAmpl/. A readme.txt file is given with the
example and describes the different steps necessary for the example to work. This example
has been written with the help of Dominique Orban and Anthony Guillou.

• CUTEr: How to optimize CUTEr [41] test problems.

• DLL: Blackbox that is coded inside a dynamic library (a Windows DLL). Single-objective
and biobjective versions are available.

• FORTRAN: Two examples.

http://www.gerad.ca/~orban/LibAmpl/

4.4. Interface examples 53

First a blackbox problem coded as a FORTRAN routine linked to the NOMAD library.

Then a more elaborated example mixing FORTRAN and the NOMAD library where a
FORTRAN program is used both to define the problem and to run NOMAD.

• GAMS: Optimization on a blackbox that is a GAMS [33] program.

• NOMAD2: Program to use NOMAD version 3 on a problem originally designed for the
version 2. This example has been written by Quentin Reynaud.

54 How to use NOMAD

// display:
NOMAD::Display out (std::cout);

// parameters creation:
NOMAD::Parameters p (out);

p.set_DIMENSION (5); // number of variables

// definition of output types:
vector<NOMAD::bb_output_type> bbot (3);
bbot[0] = NOMAD::OBJ;
bbot[1] = NOMAD::PB;
bbot[2] = NOMAD::EB;
p.set_BB_OUTPUT_TYPE (bbot);

// starting point:
p.set_X0 (NOMAD::Point (5 , 0.0));

// lower bounds: all var. >= -6:
p.set_LOWER_BOUND (NOMAD::Point (5 , -6.0));

// upper bounds (x_4 and x_5 have no upper bounds):
NOMAD::Point ub (5);
ub[0] = 5.0; // x_1 <= 5
ub[1] = 6.0; // x_2 <= 6
ub[2] = 7.0; // x_3 <= 7
p.set_UPPER_BOUND (ub);

p.set_MAX_BB_EVAL (100); // the algorithm terminates
// after 100 bb evaluations

// parameters validation:
p.check();

Figure 4.6: Example of parameters creation in library mode.

4.4. Interface examples 55

// custom evaluator creation:
My_Evaluator ev (p);

// algorithm creation and execution:
NOMAD::Mads mads (p , &ev , cout);
mads.run();

Figure 4.7: Evaluator and Mads objects usage.

{
NOMAD::Mads mads (p , &ev , cout);

// run #1:
mads.run();

}

// some changes...

{
NOMAD::Mads mads (p , &ev , cout);

// run #2:
mads.run();

}

Figure 4.8: Two runs of MADS with a NOMAD::Mads object at local scope. The cache is erased
between the two runs.

56 How to use NOMAD

NOMAD::Mads mads (p , &ev , cout);
// run #1:
mads.run();

// some changes...
mads.reset();

// run #2:
mads.run();

Figure 4.9: Two runs of MADS with a NOMAD::Mads object at a more global scope. The cache
is kept between the two runs.

Chapter 5

Tricks of the trade

NOMAD has default values for all parameters. These values represent a compromise between
robustness and performance obtained by developers on sets of problems used for benchmarking.
But you might want to improve NOMAD performance for your problem by tuning the parameters
or use advanced functionalities. The following sections provide tricks that may work for you.

57

58 Tricks of the trade

5.1 Tune NOMAD

Here are a few suggestions for tuning NOMAD when facing different symptoms. The suggestions
can be tested one by one or all together.

Symptom Suggestion Ref

I want to see more display Set display degree page 39
Blackbox manage output file name Use BB_REDIRECTION see 6.2
Quantifiable constraints Try PB, EB, PEB or combinations page 36
Difficult constraint Try PB instead of EB 4.2.1

Relax feasibility criterion H_MIN page 64
No initial point Add a LH search 4.2.1
Variables of widely Provide scaling 6.2
different magnitudes Change ∆0 per variable page 41

Tighten bounds page 38
Many variables Fix some variables 6.2

Use PSD-MADS 7.3
Unsatisfactory solution Change initial point page 42

Add a VNS search 7.5
Add a LH search page 42
Change direction types page 38
Deactivate SNAP_TO_BOUNDS page 65
Tighten bounds page 38
Change ∆0 page 41
Modify seeds that affect algorithms page 67
Disable models page 64

Improvements get negligible Change stopping criteria Type nomad -h stop
Disable models page 64

It takes long to improve f Decrease ∆0 page 41
Optimization is time consuming Perform parallel blackbox evaluations 7.3

Use surrogate 6.2
Provide a user search 7.6

Blackbox is not that expensive Setup maximum wall-clock time 4.2
Add a VNS search 7.5
Add a LH search 4.2.1
Combine direction types page 38

Biobjective optimization slow Treat an objective as a constraint 4.2.1
Perform parallel blackbox evaluations 7.3
Set bounds for objectives 4.2.1

Biobjective optimization Increase evaluation budget per MADS run 7.2
stops prematurely Decrease number of MADS run 7.2

Relax feasibility criterion H_MIN 6.1

5.2. Dynamically plot optimization history 59

5.2 Dynamically plot optimization history

Users may want to plot information during NOMAD execution. This can be achieved by im-
plementing the NOMAD::Evaluator::update_success() virtual function. You can find an
example using Java $NOMAD_HOME/examples/advances/plot.

5.3 Tools to visualize results

What-if scenarios, and sensitivity to constraints can be post analyzed with the tools of Sec-
tion 7.4.

5.4 Use categorical variables

My variables can be represented by integers, but the numbers do not mean anything and they
cannot be logically ordered without further analyses. Perhaps your problems would be more
suitably represented using categorical variables. In particular, when your problem has a number
of design variables that can vary by selecting a parameter, this parameter can be set as a
categorical variable. See Section 7.1.

Part III

ADVANCED NOMAD USAGE

61

Chapter 6

Advanced parameters

6.1 Parameters description

Advanced parameters are intended to setup optimization problems, algorithmic and output pa-
rameters when specific needs are present.

Problem parameters

name arguments description default
FIXED_VARIABLE see 6.2 fixed variables none
PERIODIC_VARIABLE index range define variables in the range to

be periodic (bounds required)
none

SGTE_COST integer c the cost of c surrogate evalua-
tions is equivalent to the cost of
one blackbox evaluation

∞

SGTE_EVAL_SORT bool if surrogates are used to sort list
of trial points

yes

SGTE_EXE list of strings; see 6.2 surrogate executables none
VARIABLE_GROUP index range defines a group of variables;

see 6.2
none

63

64 Advanced parameters

Algorithmic parameters

name arguments description default
ASYNCHRONOUS bool asynchronous strategy for the

parallel version; see 7.3
yes

BB_INPUT_INCLUDE_SEED bool if the random seed is put as the
first entry in blackbox input files

no

BB_INPUT_INCLUDE_TAG bool if the tag of a point is put as an
entry in blackbox input files

no

BB_REDIRECTION bool if NOMAD manages the cre-
ation of blackbox output files;
see 6.2

yes

CACHE_SEARCH bool enable or disable the cache
search (useful with extern
caches)

no

DISABLE string forcefully disables a feature pro-
vided as argument; see 6.2

-

EXTENDED_POLL_ENABLED bool if no, the extended poll for cat-
egorical variables is disabled

yes

EXTENDED_POLL_TRIGGER real trigger for categorical variables;
value may be relative; see 7.1

r0.1

HALTON_SEED integer Halton seed for Ortho-
MADS [8]

nth prime
number

H_MAX_0 real initial value of hmax (will be
eventually decreased through-
out the algorithm)

1E+20

H_MIN real v x is feasible if h(x) ≤ v 0.0
H_NORM norm type

in {L1, L2,
Linf}

norm used to compute h L2

HAS_SGTE bool indicates if the problem has a
surrogate (only necessary in li-
brary mode)

no or yes if
SGTE_EXE is
defined

INITIAL_MESH_INDEX integer initial mesh index `0 [8] 0
L_CURVE_TARGET real NOMAD terminates if it de-

tects that the objective may not
reach this value

none

MAX_CACHE_MEMORY integer NOMAD terminates if the
cache reaches this memory limit
expressed in MB

2000

MAX_CONSECUTIVE_FAILED_ITERATIONS integer max number of MADS failed
iterations

none

MAX_EVAL integer max number of evaluations (in-
cludes cache hits and blackbox
evaluations, does not include
surrogate eval)

none

MAX_ITERATIONS integer max number of MADS itera-
tions

none

MAX_MESH_INDEX integer max mesh index `max [8] none
MAX_SGTE_EVAL integer max number of surrogate eval-

uations
none

MAX_SIM_BB_EVAL integer max number of simulated black-
box evaluations (includes initial
cache hits)

none

6.1. Parameters description 65

name arguments description default
MESH_COARSENING_EXPONENT integer w+ [18] 1
MESH_REFINING_EXPONENT integer w− [18] -1
MESH_UPDATE_BASIS real τ [18] 4.0
MIN_MESH_SIZE see 4.2.1 ∆m

min [18] none
MIN_POLL_SIZE see 4.2.1 ∆p

min [18] none or 1
for int/bin
variables

MODEL_EVAL_SORT bool enable or not the ordering of
trial points based on a quadratic
model

yes

MODEL_SEARCH bool enable or not the search strat-
egy using quadratic models

yes

MODEL_SEARCH_OPTIMISTIC bool if model search is optimistic or
not

yes

MULTI_F_BOUNDS 4 reals see 7.2 none
MULTI_NB_MADS_RUNS integer number of MADS runs see 7.2
MULTI_OVERALL_BB_EVAL integer max number of blackbox evalu-

ations for all MADS runs
see 7.2

NEIGHBORS_EXE string neighborhood executable for
categorical variables in batch
mode

none

OPPORTUNISTIC_CACHE_SEARCH bool opportunistic strategy for cache
search

no

OPPORTUNISTIC_EVAL bool opportunistic strategy; yes
see 6.2

OPPORTUNISTIC_LH bool opportunistic strategy for LH
search; see 7.2 for biobjective

see 6.2

OPPORTUNISTIC_MIN_EVAL integer see 6.2 none
RHO real ρ parameter of the Progres-

sive Barrier
0.1

SCALING see 6.2 scaling on the variables none
SEED integer or

NONE
random seed; NONE or a nega-
tive integer to define a seed that
will be different at each run

NONE

SNAP_TO_BOUNDS bool snap to boundary trial points
that are generated outside
bounds

yes

SPECULATIVE_SEARCH bool MADS speculative search [18] yes
STAT_SUM_TARGET real NOMAD terminates if

STAT_SUM reaches this value
none

STOP_IF_FEASIBLE bool NOMAD terminates if it gener-
ates a feasible solution

no

USER_CALLS_ENABLED bool if no, the automatic calls to
user functions are disabled

yes

VNS_SEARCH bool or real VNS search; see 7.5 no

66 Advanced parameters

Ouptut parameters

name arguments description default
ADD_SEED_TO_FILE_NAMES bool if the seed is added to the file

names corresponding to parameters
HISTORY_FILE, SOLUTION_FILE and
STATS_FILE

yes

CACHE_SAVE_PERIOD integer i the cache files are saved every i iter-
ations (disabled for biobjective)

25

CLOSED_BRACE string displayed at the end of indented
blocks

‘{’

DISPLAY_DEGREE string with four digits,
each in [0; 2]

1st digit: general display; 2nd digit:
search display; 3rd digit: poll display;
4th digit: iterative display;

1111

example: DISPLAY_DEGREE 0010
INF_STR string used to display infinity ’inf’
OPEN_BRACE string displayed at the beginning of in-

dented blocks
‘}’

POINT_DISPLAY_LIMIT integer maximum number of point coordi-
nates that will be displayed at screen
(-1 for no limit)

20

SGTE_CACHE_FILE string surrogate cache file (can not be the
same as CACHE_FILE)

none

UNDEF_STR string used to display undefined values ’-’

6.2 Detailed information for some parameters

Detailed information for some of the parameters are provided in alphabetical order.

Blackbox redirection parameter BB_REDIRECTION

If this parameter is set to yes (default), NOMAD manages the creation of the blackbox out-
put file when the blackbox is executed via a system call (the redirection ‘>’ is added to the
system command). If no, then the blackbox must manage the creation of its output file named
TMP_DIR/nomad.SEED.TAG.output. Values of SEED and TAG can be obtained in the blackbox
input files created by NOMAD and given as first argument of the blackbox, only if parameters
BB_INPUT_INCLUDE_SEED and BB_INPUT_INCLUDE_TAG are both set to yes. Alternatively, the
output file name can be obtained from the input file name by replacing the extension ‘input’
by ‘output’.
In addition, TMP_DIR can be specified by the user. If no, the default TMP_DIR is the problem
directory.

6.2. Detailed information for some parameters 67

Parameter DISABLE

The DISABLE parameter is used to forcefully disable a feature. Currently, only MODELS is accepted
as argument. DISABLE MODELS is equivalent to set: MODEL_EVAL_SORT no, MODEL_SEARCH
no and DIRECTION_TYPE ORTHO N+1 NEG (if direction type is set to ORTHO N+1 QUAD, that
is the default). Please note that this parameter as no default ant that extra settings of
MODEL_EVAL_SORT, MODEL_SEARCH and DIRECTION_TYPE ORTHO N+1 QUAD will be ignored.

Fixed variables parameter FIXED_VARIABLE

This parameter is used to fix some variables to a value. This value is optional if at least one
starting point is defined. The parameter may be entered with several types of arguments:

• A string indicating a text file containing n values. Variables will be fixed to the values
that are not defined with the character ‘-’.

• A vector of n values with format (v0 v1 ... vn-1). Again, character ‘-’ may be
used for free variables.

• An index range if at least one starting point has been defined (see 4.2.1 for practical
examples of index ranges).

• An index range and a real value, with format FIXED_VARIABLE i-j v: variables i to j
will be fixed to the value v (i-j may be replaced by i).

Parameters HALTON_SEED and SEED

The directions that NOMAD explores during the poll phase are dependent upon the Halton
seed. The Halton seed is used to generate a pseudo-random sequence of numbers. The user
can change the sequence of directions by setting HALTON_SEED to a selected value.

Other aspects of NOMAD may depend on a pseudo-random sequence of numbers depending
on selected options: LH Search, GPS and LT directions, evaluation order priority, BiMads
and categorical variables. The sequence of numbers is controlled by SEED to a selected value.

Opportunistic strategies OPPORTUNISTIC_EVAL, OPPORTUNISTIC_CACHE_SEARCH and
OPPORTUNISTIC_LH

The opportunistic strategy consists in terminating the evaluations of a list of trial points at a
given step of the algorithm as soon as an improved value is found. This strategy is decided with
the parameter OPPORTUNISTIC_EVAL and applies to both the poll and search steps. For the
LH and Cache searches, the strategy may be chosen independently with OPPORTUNISTIC_LH

68 Advanced parameters

and OPPORTUNISTIC_CACHE_SEARCH. If these parameters are not defined, the parameter OP-
PORTUNISTIC_EVAL applies to the LH and Cache searches. Other defaults are considered for
biobjective optimization (see 7.2).

Scaling parameter SCALING

Scaling in NOMAD is automatically achieved via the mesh and poll size parameters which are
vectors with one value per variable. However, this method relies on the existence of bounds. For
the case when no bounds are available, or simply to give the user more control on the scaling,
the parameter SCALING has been introduced in the version 3.4.

The parameter takes variable indices and values as arguments. During the algorithm, variables
are multiplied by their associated value (that is scaled) before an evaluation and the call to
NOMAD::Evaluator::eval_x(). Outside of this method the variables are unscaled.

All NOMAD outputs (including files) display unscaled values. All variable-related parameters
(bounds, starting points, fixed variables) must be specified as unscaled. In a parameters file, the
scaling is entered similarly to bounds or fixed variables. It is possible to specify a scaling for some
variables and none for others. Enter the command $NOMAD_HOME/bin/nomad -h scaling for
more details about the use of SCALING.

Executable parameters SGTE_EXE

Surrogates, or surrogate functions, are cheaper blackbox functions that are used, at least
partially, to drive the optimization (see Figure 6.1).

The current version of NOMAD uses only static surrogates which are not updated during
the algorithm and which are provided by the user. See [32] for a survey on surrogate
optimization.

In batch mode, the parameter SGTE_EXE associates surrogate executables with blackbox exe-
cutables. It may be entered with two formats:

• SGTE_EXE bb_exe sgte_exe to associate executables bb_exe and sgte_exe,

• SGTE_EXE sgte_exe when only one blackbox executable is used. Surrogates must display
the same number of outputs as their associated blackboxes.

In the library mode, if a surrogate function is to be used, then its evaluation routine should be
coded in the method eval_x() (see Section 4.3.3). First, to indicate that a surrogate can be

6.2. Detailed information for some parameters 69

NOMAD

Blackbox-

x ∈ Rn
�

f(x)

x ∈ Ω ?

Surrogate-

?

s(x)

x ∈ Ωs ?

Figure 6.1: Blackbox optimization using surrogates.

computed, the user must set the parameter HAS_SGTE to yes, via the method NOMAD::Para-
meters::set_HAS_SGTE(). Then, in eval_x(), the test ‘if (x.get_eval_type()==SGTE)’
must be made to differentiate an evaluation with the true function f or with the surrogate.

Group of variables parameter VARIABLE_GROUP

By default NOMAD creates one group that combines all continuous, integer, and binary vari-
ables, and one group for categorical variables (see Section 7.1).

In batch mode, the VARIABLE_GROUP parameter followed by variable indices is used to explicitely
form a group of variables. Each group of variable generates its own polling directions. The
parameter may be entered several times to define more than one group of variables. Variables
in a group may be of different types (except for categorical variables). If a group contains only
binary variables, directions of type NOMAD::GPS_BINARY will be automatically used.

To define some particular types of directions or a particular Halton seed for the groups (for
OrthoMADS directions only), use the NOMAD library mode.

Groups of variable are created with the method NOMAD::Parameters::set_VARIABLE_GROUP()
which has two different prototypes. The method must be called each time a new group is created.
For both versions of the function, the set of indices of the variables composing each group is pro-
vided as argument of the function. The most complete prototype of set_VARIABLE_GROUP()
allows to choose the types of these directions, for the primary and secondary polls. The detailed
types of directions can be found in file defines.hpp and the enum type direction_type.
The simplified prototype uses OrthoMADS types of directions by default. In all cases a
Halton seed must be provided, which is not considered if direction types do not correspond

70 Advanced parameters

to OrthoMADS. Otherwise, a value must be provided. This value should be larger than
the nth prime number, and ideally be different for each group of variables. The method NO-
MAD::Directions::get_max_halton_seed() is available in order to get the highest Halton
seed that has been used, and help determine such a value. It is also possible to use the method
NOMAD::Directions::compute_halton_seed() which directly computes the Halton seed as
the nth prime number.

Finally the function NOMAD::Parameters::reset_variable_groups() may be called to reset
the groups of variables. Remember also that after a modification to a Parameters object is
made, the method NOMAD::Parameters::check() needs to be called.

Chapter 7

Advanced functionalities

7.1 Categorical variables

Categorical variables are discrete variables that can take a finite number of values. These are
not integer or binary variables as there is no ordering property amongst the different values that
can take the variables. A problem combining categorical variables with continuous variables or
even ordinary discrete variables such as integer or binary is called a mixed variables optimization
problem.

Examples on categorical variables for a simple portfolio selection problem are provided in
$NOMAD_HOME/examples/advanced/categorical. A single-objective and a biobjective
version are given in library and batch mode.

The algorithm used by NOMAD to handle mixed variables problems is defined in references [1,
4, 7, 15, 49] and works as follows.

Algorithm

At the end of an iteration where categorical variables are kept fixed, if no improvement has been
made, a special step occurs, the extended poll. The extended poll first calls the user-provided
procedure defining the neighborhood of categorical variables. The procedure returns a list of

71

72 Advanced functionalities

points that are neighbors of the current iterate such that categorical variables are changed and
the other variables may or may not be changed. These points are called the extended poll points
and their dimension may be different than the current iterate, for example when a categorical
variable indicates the number of continuous variables.

The functions defining the problem are then evaluated at each of the extended poll points and
the objective values are compared to the current best value. If the difference between the
objective value at the current iterate and at an extended poll point is less than a parameter
called the extended poll trigger, this extended poll point is called an extended poll center and
a new MADS run is performed from this point. This run is called an extend poll descent and
occurs on meshes that cannot be reduced more than the mesh of the beginning of the extended
poll. If the opportunistic strategy is active, then the different extended poll descents are stopped
as soon as a new success is achieved.

If surrogates are available, they can be used to evaluate the neighbors during the extended
poll descent. The true functions will then be evaluated only on the most promising points.
With surrogates, the extended poll costs at most the same number of true evaluations than the
number of neighbors determined by the user-provided procedure.

Mixed variables optimization with NOMAD

We suggest the reader to follow this section along with the reading of the three examples located
in examples/advanced/categorical that illustrate practical optimizations on mixed variables
optimization problems.

In NOMAD, a categorical variable is identified by setting a BB_INPUT_TYPE parameter to the
value ‘C’. In addition, solving problems with categorical variables requires to define the neigh-
boors of the current iterate. In batch mode, this is done by a separate executable (parameter
NEIGHBORS_EXE) but with the limitation that the number of variables be the same than for
the current iterate. See the provided example in examples/advanced/categorical/batch
for such a case. The limitation of a fixed number of design variables is not present in library
mode but requires user programming which is detailed in the remaining of this section.

Programming the method to define the categorical variables neighborhoods relies on a virtual
method NOMAD::Extended_Poll::construct_extended_points() provided in NOMAD; the
user must design its own NOMAD::Extended_Poll subclass in which construct_extended_poin-
ts() is coded. This method takes as argument a point (the current iterate) and registers a
list of extended poll points (the neighbors of the current iterate) by calling the method NO-
MAD::Extended_Poll::add_extended_poll_point(). In its main function, the user gives
its own NOMAD::Extended_Poll object to the NOMAD::Mads object used to optimize the prob-

7.1. Categorical variables 73

lem. If no NOMAD::Extended_Poll is provided to the NOMAD::Mads object, the program will
generate an error.

In addition, each point in the algorithm possesses a signature (implemented in the NOMAD::Signa-
ture class), indicating the characteristics related to the variables: their number, their types,
their bounds, their scaling, identification of fixed and periodic variables, and some informa-
tion on the initial mesh size parameter for each variable. Hence, in the user-provided NO-
MAD::Extended_Poll subclass, for each extended poll point, a signature must be provided. If
the extended poll point has the same charateristics than the current iterate, the signature of the
current iterate can be used. However, if the number of variables varies according to the value
taken by a categorical variable, a new signature must be created and the user is responsible for
dealing with the associated memory allocations and deallocations. See the NOMAD::Signature
class and the example located in examples/advanced/categorical/single_obj/ for details
about creating signatures.

Although the dimension of the problem may change during optimization, the starting points
must all have the same charateristics (in particular number and types of variables). For these
starting points, the NOMAD::Parameters class will automatically create a standard signature.
However, if categorical variables are present, the user must explicitly provide starting points.
The reason is that the standard poll requires at least one starting point and an initial Latin-
Hypercube search cannot be executed to find a starting point (see Section 4.2.1) because it has
no reference signature for defining a value for each categorical variable.

Changing the values of the categorical variables is done exclusively during the extended poll
phase by providing the neighbors of the current iterate. The logic for providing the neighboors
is entirely left to the user. For this reason, it is not necessary to provide bounds for the categorical
variables whether in the initial description of the problem or when providing extended poll point
signatures. A warning message may be displayed when providing bounds for categorical variables.

The main parameter for mixed variable optimization is the extended poll trigger. Its value is
indicated with the parameter EXTENDED_POLL_TRIGGER, and may be given as a relative value.
The extended poll trigger is used to compare the objective values at an extended poll point y
and at the current iterate xk. If f(y) < f(xk)+trigger, then y becomes an extended poll center
from which a MADS run is performed. The default trigger value is r0.2, meaning that an
extended poll point will become an extended poll center if f(y) is less than f(xk)+f(xk)×0.2.
See the function NOMAD::Extended_Poll::check_trigger() for the details of this test and
for the cases where infeasible points or surrogate evaluations are considered.

Finally, please note that the boolean parameter EXTENDED_POLL_ENABLED can simply enable
or disable the extended poll. When disabled, the categorical variables are simply fixed to their

74 Advanced functionalities

initial value.

7.2 Biobjective optimization

NOMAD can solve biobjective optimization problem in search of a Pareto front. Exam-
ples of biobjective problems solved by NOMAD in library and batch mode are given in
$NOMAD_HOME/basic/(batch|library)/bi_obj.

NOMAD performs biobjective optimization through the BiMADS algorithm described in [27].
The BiMADS algorithm solves biobjective problems of the form

min
x∈Ω

F (x) =
(
f1(x), f2(x)

)
. (7.1)

The algorithm launches successive runs of MADS on single-objective reformulations of the
problem. An approximation of the Pareto front, or the list of points that are dominant following
the definition of [27], is constructed with the evaluations performed during these MADS runs.

Two considerations must be taken into account when generating Pareto fronts: the quality
of approximation of the dominant points and the repartition of these points. The quality of
approximation may be measured with the surf criterion that gives the ratio of the area under
the graph of the front relatively to a box enclosing all points (small values indicate a good front).

The quality of the coverage of the Pareto front is measured by the δ criterion, which corresponds
to the largest distance between two successive Pareto points.

To define that a problem has two objectives, two arguments of the parameter BB_OUTPUT_TYPE
must be set to OBJ. Then, NOMAD will automatically run the BiMADS algorithm. Additional
parameters are:

• MULTI_F_BOUNDS f1_min f1_max f2_min f2_max (real values): these 4 values are nec-
essary to compute the surf criterion. If not entered or if not valid (for example if f1_min
is too big), then surf is not computed.

• MULTI_NB_MADS_RUNS (integer): the number of single-objective MADS runs.

• MULTI_OVERALL_BB_EVAL (integer): the maximum number of blackbox evaluations over
all MADS runs.

7.3. Parallel versions 75

Default values are considered if these parameters are not entered. All other MADS parameters
are considered and apply to single MADS runs, with some adaptations:

• The MAX_BB_EVAL parameter corresponds to the maximum number of blackbox evalua-
tions for one MADS run.

• The F_TARGET parameter is adapted to biobjective: it must be given with the two values
z1 and z2. If a point x is generated such that f1(x) ≤ z1 and f2(x) ≤ z2, then the
algorithm terminates. In this case, the criterion defines a utopian point. If it can be
achieved than the pareto front is a single point.

• The Latin-Hypercube (LH) search (LH_SEARCH p_0 p_1): in single-objective op-
timization, p_0 and p_1 correspond to the initial number of search points and to the
number of search points at each iteration, respectively. In the biobjective context, p_0
is the number of initial search points generated in the first MADS run, and p_1 is the
number of points for the second MADS run. If no LH search is defined by the user,
and if only MULTI_OVERALL_BB_EVAL is defined, then a default LH search is performed.
Moreover, this default LH search is non-opportunistic (OPPORTUNISTIC_LH set to no).

• The parameter SOLUTION_FILE is disabled.

The NOMAD solution represents an approximation of the Pareto front and is accessible via the
DISPLAY_STATS or STATS_FILE parameters. If DISPLAY_DEGREE is greater than 1, then the
two measures surf and δ are displayed.

For a given budget of blackbox evaluations (MULTI_OVERALL_BB_EVAL), if the quality of approx-
imation is desired (small value for surf), then single MADS optimizations must terminate after
more severe criteria (for example a large number of blackbox evaluations, via MAX_BB_EVAL). If
a better repartition of the points is desired (small value for δ), then the number of MADS runs
should be larger, with less severe stopping criteria on single-objective optimizations.

7.3 Parallel versions

7.3.1 Compilation

The NOMAD parallel versions are based on the message passing interface (MPI [58]). In
particular, the MPI implementations openMPI, LAM, MPICH and the Microsoft HPC pack
have been tested. To obtain the parallel binaries (executable and static library), NOMAD must
link with MPI.

76 Advanced functionalities

For Linux, Unix or Mac OS X, the parallel binaries can be obtained by typing make mpi in
the $NOMAD_HOME/src directory, after ensuring that the command mpic++ works. The compila-
tion will produce the executable nomad.MPI.exe and the static library nomad.MPI.a. It is also
possible to install all NOMAD binaries (all combinations of scalar/parallel and executables/static
libraries) by typing ./install.sh in the $NOMAD_HOME/install directory.

For Windows, the parallel binaries can be obtained by compiling NOMAD with Microsoft
Visual C++ (2010). First, you must install a MPI implementation (MPICH or the Microsoft
HPC pack, for example). Then, once your project is created, in the project properties, add the
MPI library directory into ‘Linker Additional Library Directories’, and add the MPI
library (typically mpi.lib) into ‘Linker Input Additional Dependencies’. Finally, add
the location of the MPI header file into ‘Additional Include Directories’. Please note that it is
also possible to obtain the parallel binaries by using the GNU C++ compiler with the MinGW
environment. Details to perform parallel compilation/configuration/execution are provided in
the document %NOMAD_HOME%\install\readme.MPI_for_MINGW.rtf.

7.3.2 Algorithms

Three parallel versions of the algorithm have been developed, namely p-MADS, Coop-MADS,
and PSD-MADS. While p-MADS is directly implemented into NOMAD, the two others are
programs using linked with the NOMAD static library (scalar), and are located in the tools
directory. These parallel versions are developed with MPI [58] under a master/slaves paradigm.

When creating blackbox problems it is important to keep in mind that the blackboxes will
be called in parallel. So it is crucial that intermediary files possess different names: unique
identifiers must be used. For that purpose, in library mode, in your custom eval_x() function,
use the unique tag of the trial points with the method NOMAD::Eval_Point::get_tag(). It
is also possible to use NOMAD::get_pid() to generate a unique identifier. In batch mode,
NOMAD may communicate the seed and the tag of a point to the blackbox executable with the
parameters BB_INPUT_INCLUDE_SEED and BB_INPUT_INCLUDE_TAG (see Section 6.2).

The user must be aware of the random aspect induced by the parallel versions. Even if deter-
ministic directions such as OrthoMADS are used, two parallel runs may not have the same
outputs. Tests have suggested that p-MADS will give similar results than the scalar version,
but much faster. The quality of the results may sometimes be less due to the fact that the
usually efficient opportunistic strategy is not exploited as well as in the scalar version. However,
the more evolved Coop-MADS strategy seems to give better results than the scalar version,
and faster. The efficiency of the PSD-MADS algorithm is more noticeable on large problems
(more than 20 and up to '500 variables) on which the other versions are not efficient.

7.3. Parallel versions 77

A short description of the methods is given in the following sections, and for a more complete
description as well as for numerical results, please consult [51].

For the sake of simplicity, the remaining of the discussion focuses on utilizing the parallel ver-
sion in the Linux/Unix/Mac OS X environments. The same principles apply in the Windows
environment but the tasks can be performed via the Microsoft Visual C++ menus and in the
command shell window. Please contact NOMAD support if more details are needed.

The p-MADS method

p-MADS is the basic parallel version of the MADS algorithm where each list of trial points
is simply evaluated in parallel.

There are two versions of this method: first the synchronous version where an iteration is over
only when all evaluations in progress are finished. With this strategy, some processes may be idle.
The other version is the asynchronous method which consists in interrupting the iteration as
soon a new success is made. If there are some evaluations in progress, these are not terminated.
If these evaluations lead to successes after they terminate, then the algorithm will consider them
and go back to these ‘old’ points. This version allows no process to be idle. The synchronous
and asynchronous versions may be chosen via the parameter ASYNCHRONOUS whose default is
yes.

The p-MADS executable is named nomad.MPI.exe and is located in the bin directory. It can
be executed with the mpirun or mpiexec commands with the following format under Linux:

mpirun -np p $NOMAD_HOME/bin/nomad.MPI.exe param.txt

where p is the number of processes and param.txt is a parameters file with the same format as
for the scalar version. If you have a number c of processors, then it is suggested to choose np
to be equal to c+ 1 (one master and c slaves). It may also be argued that np be proportional
to the number of polling directions. For example, for a problem with n = 3 variables and 2n
polling directions, each poll is going to generate 6 trial points, and on a 8-processors machine,
chosing np=7 may be a better choice than np=9.

78 Advanced functionalities

The Coop-MADS method

The idea behind the Coop-MADS method is to run several MADS instances in parallel
with different seeds so that no one has the same behavior.

A special process, called the cache server, replaces the usual master process. It implements a
parallel version of the cache allowing each process to query if the evaluation at a given point has
already been performed. This forbids any double evaluation. The cache server allows also the
processes to perform the cache search, a special search consisting in retrieving, at each MADS
iteration, the currently best known point.

The program given in the tools directory implements a simple version of the method where
only one type of directions is used with different seeds: LT-MADS or OrthoMADS, with a
different random seed or a different Halton seed.

This program is not precompiled and the user must compile it as any other code using the
NOMAD static library. Makefiles working for Linux, Unix and Mac OS X are provided. Usage
of the program is as follows:

mpirun -np p $NOMAD_HOME/tools/COOP-MADS/coopmads param.txt

as for p-MADS. Since the cache server is not demanding on computational time, the user can
choose np to be the number of available processors plus one.

The PSD-MADS method

The PSD-MADS method implements a parallel space decomposition of MADS and is is
described in [21]. The method aims at solving larger problems than the scalar version of
NOMAD.

NOMAD is in general efficient for problems with up to ' 20 variables, PSD-MADS has
solved problems with up to 500 variables.

In PSD-MADS, each slave process has the responsibility for a small number of variables on
which aMADS algorithm is performed. These subproblems are decided by the master process.
In the program given in the NOMAD package, as in the original paper, these groups of variables

7.4. Sensitivity analysis 79

are chosen randomly, without any specific strategy. Concerning other aspects, the program given
here is a simplified version of the one used for the SIOPT article. A cache server is also used as
in Coop-MADS to forbid double evaluations. A special slave, called the pollster, works on all
the variables, but with a reduced number of directions. The pollster ensures the convergence of
the algorithm.

PSD-MADS must be compiled exactly as Coop-MADS, with the available makefile, and it
executes with the command:

mpirun -np p $NOMAD_HOME/tools/PSD-MADS/psdmads param.txt bbe ns

where bbe is the maximal number of evaluations performed by each slave and ns is the number
of variables considered by the slaves. So far, tests suggested that small values for these two
parameters lead to good performance. In [21] and [51], bbe=10 and ns=2 are considered. The
suggested strategy for np consists in setting it to the number of processors plus two (master
and cache server are not demanding CPU ressources).

Future research will include the design of evolved strategies in order to choose smart groups of
variables on which slaves focus.

7.4 Sensitivity analysis

Sensitivity analysis can perform ‘What If’ studies in engineering problems context.

Two tools are available in the NOMAD package to perform sensitivity analyses for
constraints, which is a useful tool to grasp more knowledge and see which constraints are
important and which may be relaxed or tighten.

Details on the sensitivity analysis with blackboxes and some theoretical results on a smooth
case may be consulted in [23].

Two tools are available in directory $NOMAD_HOME/tools/SENSITIVITY as program sources and
can be compiled with makefiles. The tools generate the data necessary to plot objective versus
constraint graphs.

The first program is called cache_inspect and performs the simple analysis which consists in

80 Advanced functionalities

inspecting the cache produced after the execution of NOMAD on a constrained problem (the
CACHE_FILE parameter must be set). The necessary inputs of this tool are a cache file and
two blackbox output indices: one for the objective function, and one for the studied constraint.
This last index may refer to a lower or an upper bound: in that case a file containing the
bound values must be indicated. The program displays three columns with the values of the
studied constraint cj(x) and of the objective f(x), and a 0/1 flag indicating whether or not the
couple (cj(x), f(x)) is nondominated in the sense of the dominance notion of [27]. An optional
parameter allows to display only nondominated points. These values may be plotted for example
with a Matlab script (one is available in the cache_inspect directory).

The second program, called detailed_analysis, performs the detailed analysis. With this
tool, the original problem with constraint cj(x) ≤ 0 is replaced with the biobjective problem

min
x∈Ωj

(cj(x), f(x))

s.t. cj ≤ cj(x) ≤ cj

where Ωj is the feasible set Ω minus the constraint. The use of the BiMADS algorithm allows
to focus explicitely on the studied constraint in order to obtain a more precise sensitivity. The
program takes as inputs a parameters file, the constraint and objective indices, and a cache file.
The latter may be empty or not at the beginning of the execution, and it will be updated with
the new evaluations. The updated cache file is in fact the output of the program and it may be
inspected with the cache_inspect tool in order to get the data for the sensitivity graphs. The
cj and cj values used to bound the value of cj(x) may also be specified as input to the tool,
as well as a maximum number of evaluations that bypasses the one inside the parameters file.
Both programs may be executed without any input which result in the display of the required
inputs description.

The typical way of using these tools is as follows: after a single run of MADS, the user uses
the simple analysis in order to get a fast preview of the sensitivity without additional blackbox
evaluation. After that it is possible to get a more precise analysis on one or several constraints
of interest using the detailed analysis, to the cost of additional evaluations.

7.5 Variable Neighborhood Search (VNS)

The Variable Neighborhood Search (VNS) is a strategy to escape local minima.

The VNS search strategy is described in [12]. It is based on the Variable Neighborhood
Search metaheuristic [55, 45].

7.6. User search 81

VNS should only be used for problems with several such local optima. It will cost some additional
evaluations, since each search performs another MADS run from a perturbed starting point.
Though, it will be a lot cheaper if a surrogate is provided via parameter HAS_SGTE or SGTE_EXE.
We advise the user not to use VNS with biobjective optimization, as the BiMADS algorithm
already performs multiple MADS runs.

In NOMAD the VNS search strategy is not activated by default. In order to use the VNS
search, the user has to define the parameter VNS_SEARCH, with a boolean or a real. This expected
real value is the VNS trigger, which corresponds to the maximum desired ratio of VNS blackbox
evaluations over the total number of blackbox evaluations. For example, a value of 0.75 means
that NOMAD will try to perform a maximum of 75% blackbox evaluations within the VNS
search. If a boolean is given as value to VNS_SEARCH, then a default of 0.75 is taken for the
VNS trigger.

From a technical point of view, VNS is coded as a NOMAD::Search sub-class, and it is a good ex-
ample of how a user-search may be implemented. See files $NOMAD_HOME/src/VNS_Search.*pp
for details.

7.6 User search

The default search strategy in NOMAD is based on quadratic models. But, users may code
their own search strategy.

The search must be programmed in a user-defined class. The objective of this user class is to
redefine the virtual method NOMAD::Search::search() that will be automatically called by
the algorithm. The prototype of search() is given in Figure 7.1.

Users can take the example in $NOMAD_HOME/examples/advanced/user_search to setup their
own search. This example corresponds to a search described in [24]. Other examples on how to
design a search strategy can be found in files $NOMAD_HOME/src/Speculative_Search.*pp,
LH_Search.*pp, and VNS_Search.*pp. Please note that the MADS theory assumes that trial
search points must be lying on the current mesh. Functions NOMAD::Point::project_to_mesh()
and NOMAD::Double::project_to_mesh() are available to perform such projections.

82 Advanced functionalities

void search
(NOMAD::Mads & mads ,

int & nb_search_pts ,
bool & stop ,
NOMAD::stop_type & stop_reason ,
NOMAD::success_type & success ,
bool & count_search ,
const NOMAD::Eval_Point *& new_feas_inc ,
const NOMAD::Eval_Point *& new_infeas_inc) ;

Figure 7.1: Prototype of method NOMAD::Search::search().

Part IV

ADDITIONAL INFORMATION

83

Appendix A

Release notes

A.1 Version 3.6

Major changes

• The OrthoMADS algorithm has been extented to use N+1 directions in addition of the
existing 2N version. The default setting is DIRECTION_TYPE ORTHO N+1 QUAD that makes
use of quadratic models to obtain the (n + 1)th direction. Preliminary tests have shown
that using the new default setting significantly improves performance over the previous
version (OrthoMADS 2N).

• Quadratic models are available for BiMads.

• The Matlab version is available.

• The user guide has been reformatted.

• The installation procedure for Windows has been modified to allow copy of examples in a
user-specified directory.

Minor changes

A few bugs have been corrected and some minor changes listed below have been applied.

85

86 Release notes

• Fix bug when using VNS_SEARCH with PEB type constraints.

• Add a level of display (NO_DISPLAY, ++MINIMAL_DISPLAY++,
NORMAL_DISPLAY, FULL_DISPLAY).

• Add one category of parameters for developer needs.

• Re-distribute NOMAD parameters among the three categories (basic, advanced, develop-
per).

• Change the implicit variable scaling procedure based on bounds and initial values.

• Add several parameters to control OrthoMADS with N+1 directions.

• Display a specific message for users attempting to use binary compiled for MPI on a single
process, that is without using mpirun.

• Modify test that x0s are within bounds for biobjective problem and categorical variables.

• Change display rules for phase one search.

• Fix display of evaluation for extented poll with the option DISPLAY_ALL_EVAL.

• Add the parameter DISABLE to forcefully disable a feature that is used in several algo-
rithms. Presently, only MODELS can be disabled (used for model search, for sorting before
evaluation, for obtaining a n+ 1th direction).

• Fix bug on initial mesh size test.

• Fix bug on a check bimads flag that was reset improperly during phase-one search (bug
happen when using VNS_SEARCH.

• Fix bug when using categorical variable with a signature that contains a fixed variable.

A.2 Previous versions

Version 3.5

• Quadratic models are used to improve the algorithm efficiency. Details and benchmarks
are available in [34]. A new model search strategy has been implemented in which a local
quadratic model is built and optimized in order to provide up to 4 new trial points at each
iteration. Also, with model ordering a local quadratic model is built and the points are
sorted accordingly to this model so that the most promising points are evaluated first.

A.2. Previous versions 87

• The new parameter MAX_CONSECUTIVE_FAILED_ITERATIONS allows to stop the algorithm
after a number of unsuccessful iterations of the MADS algorithm.

• When no bounds are present, the initial mesh size (parameter INITIAL_MESH_SIZE) has
a new default value: instead of being 1 it is now based on the coordinates of the starting
point.

• The new parameter NEIGHBORS_EXE allows the handling of categorical variables in batch
mode. See Section 7.1 and the example located in examples/advanced/categorical/batch.

• A series of parameters influencing the behavior of model search have been renamed for
consistency.

• When CTRL-C is pressed an evaluation can be interrupted in library mode within the user
provided function eval_x().

• A random number generator have been implemented to allow repeatability of the results
on different plateforms.

• A bug in the display format of the stats present when compiling with Microsoft Visual
Studio C++ has been corrected (hexadecimal display).

• A bug when using categorical variables with varying problem dimensionality has been fixed.

• A bug in the values of integers for fine meshes has been fixed.

• A bug in the display stats for the phase one search has been corrected.

Version 3.4

• Parallelism: Three parallel algorithms are now available. See Section 7.3 for details.

• All NOMAD types and classes are now included in the namespace NOMAD. Consequently
enumeration types and constants have their names changed from _X_ to NOMAD::X.

• A documentation has been constructed in the HTML format with the doxygen documenta-
tion generator. It is available from the NOMAD website at www.gerad.ca/nomad/doxygen/html.

• NOMAD is now distributed under the GNU Lesser General Public License (LGPL). The
license can be found as a text file in the src directory or at www.gnu.org/licenses.

• A new parameter SCALING allowing the scaling of the variables. See Section 6.2.

• Tool for sensitivity analysis (see Section 7.4).

http://www.doxygen.org
http://www.gerad.ca/nomad
http://www.gerad.ca/nomad/doxygen/html
http://www.gnu.org/licenses

88 Release notes

Version 3.3

• Handling of categorical variables for mixed variable problems (MVP). See Sec-
tion 7.1.

Version 3.2

• Variable Neighborhood Search (VNS) described in Section 7.5.

• Installers for X systems.

• Help on parameters included in the executable: the command ‘nomad -h keyword’
displays help on the parameters related to keyword. Typing only ‘nomad -h’ or ‘nomad
-help’ displays all the available help: a complete description of all parameters. Also,
‘nomad -i’ or‘nomad -info’ displays information on the current release, and ‘nomad
-v’ displays the current version.

Version 3.1

• Biobjective optimization: see Section 7.2.

• Periodic variables: if some variable are periodic, this may be indicated via parameter
PERIODIC_VARIABLE. Bounds must be defined for these variables. The MADS algorithm
adapted to periodic variables is described in [24].

• Groups of variables can be defined with the parameter VARIABLE_GROUP. At every
MADS poll, different directions will be generated for each group. For example, for a
location problem, if groups correspond to spatial objects, these will be moved one at a
time.

A.3 Future versions

Future algorithmic developments include:

• Adaptive surrogates and use of the surrogate management framework [32].

• Multi-MADS: multi-objective variant of MADS [27], with 3 and more objective func-
tions.

• Improving BiMads algorithm when feasible solutions are difficult to find.

• Better management of integer variables.

A.3. Future versions 89

• Making surrogate functions available for the Matlab version.

Appendix B

Developer parameters

A set of developer parameters are available in the table below for fine tuning algorithmic settings.
Additional information on each parameter is available by typing $NOMAD_HOME/bin/nomad -d
PARAM_NAME.

91

92 Developer parameters

Please note that the ‘-d PARAM_NAME’ option is required which is different than the ‘-h PARAM_NAME’ option
required for other parameters.
name arguments description default
EPSILON real precision on reals 1E-13
MODEL_EVAL_SORT_CAUTIOUS bool if the model ordering strategy is

cautious
yes

MODEL_SEARCH_MAX_TRIAL_PTS integer limit on the number of trial
points for one model search

4

MODEL_SEARCH_PROJ_TO_MESH bool if model search trial points are
projected to the mesh

yes

MODEL_QUAD_MAX_Y_SIZE integer sup. limit on the size of interpo-
lation sets for quadratic models

500

MODEL_QUAD_MIN_Y_SIZE integer or string inf. limit on the size of interpo-
lation sets for quadratic models

N+1

MODEL_QUAD_RADIUS_FACTOR real quadratic model search radius
factor

2.0

MODEL_QUAD_USE_WP bool enable the strategy to maintain
well-poisedness with quadratic
models

no

MULTI_FORMULATION string how to compute one value from
two objectives

PRODUCT or
DIST_L2

MULTI_USE_DELTA_CRIT bool use stopping criterion based on
δ measure

no

OPPORTUNISTIC_LUCKY_EVAL bool parameter for opportunistic
strategy

none

OPPORTUNISTIC_MIN_F_IMPRVMT real parameter for opportunistic
strategy

none

OPPORTUNISTIC_MIN_NB_SUCCESS integer parameter for opportunistic
strategy

none

OPT_ONLY_SGTE bool minimize only with surrogates no
SEC_POLL_DIR_TYPE see 4.2.1 type of directions for the sec-

ondary poll
see 4.2.1

Appendix C

Statistical dynamic surrogates

In addition to quadratic models, the NOMAD package includes the use of statistical dynamic
surrogates constructed with the TGP package [42] based on the treed Gaussian processes
developed by Gramacy and Lee [44]. Dynamic surrogates are different from the static surrogates
available with the SGTE_EXE option: a static surrogate is provided by the user and is never
updated, while a dynamic surrogate is automatically constructed and updated by NOMAD.
Thus we refer to them as models in order to avoid confusion.

The statistical models obtained with TGP are used in two different places in NOMAD: as a
search step, called the model search (option MODEL_SEARCH), and for ordering the different lists
of trial points before they are evaluated (option MODEL_EVAL_SORT).

The sorting of the points consists to evaluate the model on the candidates and then to consider
first the most promising points according to the model. This exploits the opportunistic strategy.
The principle of the model search is based on the Surrogate Management Framework of Booker
et al. [32] and is similar to the use of quadratic models, detailed in [34]: at each iteration,
based on the cache points, one model is constructed for the objective function and for each
constraint. These models are then optimized by NOMAD itself, which gives new candidates
to evaluate. There are differences with quadratic models: first there is no interpolation radius:
all points in the cache are considered to construct the model, because TGP aims at global
interpolation. Hence, NOMAD and TGP can be viewed as a good tool for global optimization.

93

94 Statistical dynamic surrogates

Another difference is that TGP provides additional statistics such as the Expected Improvement
(EI) [47], which allows a richer exploration of the design space. These different strategies are
detailed in the reference [43].

In order to use NOMAD with TGP, the user has to install the external TGP library found
here: http://www.cran.r-project.org/web/packages/tgp/index.html. Note that TGP
is developed in R [57] which needs to be installed first.

NOMAD uses a dynamic library version of TGP, which needs to be compiled by the command R
CMD INSTALL tgp executed in top of the TGP installation folder, which should be memorized
in the environment variable $TGP_HOME. Then NOMAD must be compiled using the provided
makefile.TGP makefile.

Finally, in order to activate the use of TGP, the parameters file has to include the following
instructions:

MODEL_SEARCH TGP
MODEL_EVAL_SORT TGP

In this case both the model search and the sorting of the trial points will be performed with
TGP. It is however possible to assign one of these two options to either the quadratic models
or to nothing.

Finally, TGP is stochastic and its behaviour will be different at each execution, depending on
the value of the SEED parameter.

http://www.cran.r-project.org/web/packages/tgp/index.html

Bibliography

[1] M.A. Abramson. Mixed variable optimization of a load-bearing thermal insulation system
using a filter pattern search algorithm. Optimization and Engineering, 5(2):157–177, 2004.

[2] M.A. Abramson. Second-order behavior of pattern search. SIAM Journal on Optimization,
16(2):315–330, 2005.

[3] M.A. Abramson and C. Audet. Convergence of mesh adaptive direct search to second-order
stationary points. SIAM Journal on Optimization, 17(2):606–619, 2006.

[4] M.A. Abramson, C. Audet, J.W. Chrissis, and J.G. Walston. Mesh adaptive direct search
algorithms for mixed variable optimization. Optimization Letters, 3(1):35–47, 2009.

[5] M.A. Abramson, C. Audet, G. Couture, J.E. Dennis, Jr., S. Le Digabel, and C. Tribes. The
NOMAD project. Software available at http://www.gerad.ca/nomad.

[6] M.A. Abramson, C. Audet, and J.E. Dennis, Jr. Generalized pattern searches with derivative
information. Mathematical Programming, Series B, 100:3–25, 2004.

[7] M.A. Abramson, C. Audet, and J.E. Dennis, Jr. Filter pattern search algorithms for mixed
variable constrained optimization problems. Pacific Journal of Optimization, 3(3):477–500,
2007.

[8] M.A. Abramson, C. Audet, J.E. Dennis, Jr., and S. Le Digabel. OrthoMADS: A de-
terministic MADS instance with orthogonal directions. SIAM Journal on Optimization,
20(2):948–966, 2009.

95

http://www.gerad.ca/nomad

96 Bibliography

[9] M.A. Abramson, O.A. Brezhneva, J.E. Dennis Jr., and R.L. Pingel. Pattern search in the
presence of degenerate linear constraints. Optimization Methods and Software, 23(3):297–
319, 2008.

[10] C. Audet. Convergence results for pattern search algorithms are tight. Optimization and
Engineering, 5(2):101–122, 2004.

[11] C. Audet, V. Béchard, and J. Chaouki. Spent potliner treatment process optimization using
a MADS algorithm. Optimization and Engineering, 9(2):143–160, 2008.

[12] C. Audet, V. Béchard, and S. Le Digabel. Nonsmooth optimization through mesh adaptive
direct search and variable neighborhood search. Journal of Global Optimization, 41(2):299–
318, 2008.

[13] C. Audet, A.J. Booker, J.E. Dennis, Jr., P.D. Frank, and D.W. Moore. A surrogate-model-
based method for constrained optimization. Presented at the 8th AIAA/ISSMO Symposium
on Multidisciplinary Analysis and Optimization, 2000.

[14] C. Audet, A.L. Custódio, and J.E. Dennis, Jr. Erratum: Mesh adaptive direct search
algorithms for constrained optimization. SIAM Journal on Optimization, 18(4):1501–1503,
2008.

[15] C. Audet and J.E. Dennis, Jr. Pattern search algorithms for mixed variable programming.
SIAM Journal on Optimization, 11(3):573–594, 2001.

[16] C. Audet and J.E. Dennis, Jr. Analysis of generalized pattern searches. SIAM Journal on
Optimization, 13(3):889–903, 2003.

[17] C. Audet and J.E. Dennis, Jr. A pattern search filter method for nonlinear programming
without derivatives. SIAM Journal on Optimization, 14(4):980–1010, 2004.

[18] C. Audet and J.E. Dennis, Jr. Mesh adaptive direct search algorithms for constrained
optimization. SIAM Journal on Optimization, 17(1):188–217, 2006.

[19] C. Audet and J.E. Dennis, Jr. Nonlinear programming by mesh adaptive direct searches.
SIAG/Optimization Views-and-News, 17(1):2–11, 2006.

[20] C. Audet and J.E. Dennis, Jr. A progressive barrier for derivative-free nonlinear program-
ming. SIAM Journal on Optimization, 20(4):445–472, 2009.

[21] C. Audet, J.E. Dennis, Jr., and S. Le Digabel. Parallel space decomposition of the mesh
adaptive direct search algorithm. SIAM Journal on Optimization, 19(3):1150–1170, 2008.

[22] C. Audet, J.E. Dennis, Jr., and S. Le Digabel. Globalization strategies for mesh adaptive
direct search. Computational Optimization and Applications, 46(2):193–215, 2010.

Bibliography 97

[23] C. Audet, J.E. Dennis, Jr., and S. Le Digabel. Trade-off studies in blackbox optimization.
Optimization Methods and Software, 27(4–5):613–624, 2012.

[24] C. Audet and S. Le Digabel. The mesh adaptive direct search algorithm for periodic
variables. Pacific Journal of Optimization, 8(1):103–119, 2012.

[25] C. Audet, S. Le Digabel, and C. Tribes. NOMAD user guide. Technical Report G-2009-37,
Les cahiers du GERAD, 2009.

[26] C. Audet and D. Orban. Finding optimal algorithmic parameters using derivative-free
optimization. SIAM Journal on Optimization, 17(3):642–664, 2006.

[27] C. Audet, G. Savard, and W. Zghal. Multiobjective optimization through a series of single-
objective formulations. SIAM Journal on Optimization, 19(1):188–210, 2008.

[28] C. Audet, G. Savard, and W. Zghal. A mesh adaptive direct search algorithm for multiob-
jective optimization. European Journal of Operational Research, 204(3):545–556, 2010.

[29] A.J. Booker, E.J. Cramer, P.D. Frank, J.M. Gablonsky, and J.E. Dennis, Jr. Movars:
Multidisciplinary optimization via adaptive response surfaces. AIAA Paper 2007–1927,
2007.

[30] A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D.W. Moore, and D.B. Serafini. Managing
surrogate objectives to optimize a helicopter rotor design – further experiments. AIAA
Paper 1998–4717, Presented at the 8th AIAA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, St. Louis, 1998.

[31] A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D.B. Serafini, and V. Torczon. Optimization
using surrogate objectives on a helicopter test example. In J. Borggaard, J. Burns, E. Cliff,
and S. Schreck, editors, Optimal Design and Control, Progress in Systems and Control
Theory, pages 49–58, Cambridge, Massachusetts, 1998. Birkhäuser.

[32] A.J. Booker, J.E. Dennis, Jr., P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trosset. A
rigorous framework for optimization of expensive functions by surrogates. Structural and
Multidisciplinary Optimization, 17(1):1–13, 1999.

[33] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A Users’ Guide. The Scientific Press,
Danvers, Massachusetts, 1988.

[34] A.R. Conn and S. Le Digabel. Use of quadratic models with mesh-adaptive direct search for
constrained black box optimization. Optimization Methods and Software, 28(1):139–158,
2013.

[35] E.J. Cramer, J.E. Dennis, Jr., P.D. Frank, R.M. Lewis, and G.R. Shubin. Problem formu-
lation for multidisciplinary optimization. In AIAA Symposium on Multidisciplinary Design
Optimization, September 1993.

98 Bibliography

[36] J.E. Dennis, Jr., C.J. Price, and I.D. Coope. Direct search methods for nonlinearly con-
strained optimization using filters and frames. Optimization and Engineering, 5(2):123–144,
2004.

[37] J.E. Dennis, Jr. and V. Torczon. Direct search methods on parallel machines. SIAM Journal
on Optimization, 1(4):448–474, 1991.

[38] K.R. Fowler, J.P. Reese, C.E. Kees, J.E. Dennis Jr., C.T. Kelley, C.T. Miller, C. Au-
det, A.J. Booker, G. Couture, R.W. Darwin, M.W. Farthing, D.E. Finkel, J.M. Gablonsky,
G. Gray, and T.G. Kolda. Comparison of derivative-free optimization methods for ground-
water supply and hydraulic capture community problems. Advances in Water Resources,
31(5):743–757, 2008.

[39] A.E. Gheribi, C. Audet, S. Le Digabel, E. Bélisle, C.W. Bale, and A.D. Pelton. Calculat-
ing optimal conditions for alloy and process design using thermodynamic and properties
databases, the FactSage software and the Mesh Adaptive Direct Search algorithm. CAL-
PHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 36:135–143, 2012.

[40] A.E. Gheribi, C. Robelin, S. Le Digabel, C. Audet, and A.D. Pelton. Calculating all local
minima on liquidus surfaces using the factsage software and databases and the mesh adap-
tive direct search algorithm. The Journal of Chemical Thermodynamics, 43(9):1323–1330,
2011.

[41] N.I.M. Gould, D. Orban, and Ph.L. Toint. CUTEr (and SifDec): A constrained and un-
constrained testing environment, revisited. ACM Transactions on Mathematical Software,
29(4):373–394, 2003.

[42] R.B. Gramacy. tgp: An R package for Bayesian nonstationary, semiparametric nonlinear
regression and design by treed Gaussian process models. Journal of Statistical Software,
19(9):1–46, 2007.

[43] R.B. Gramacy and S. Le Digabel. The mesh adaptive direct search algorithm with treed
Gaussian process surrogates. Technical Report G-2011-37, Les cahiers du GERAD, 2011.

[44] R.B. Gramacy and H.K.H. Lee. Bayesian treed Gaussian process models with an application
to computer modeling. Journal of the American Statistical Association, 103(483):1119–
1130, 2008.

[45] P. Hansen and N. Mladenović. Variable neighborhood search: principles and applications.
European Journal of Operational Research, 130(3):449–467, 2001.

[46] R.E. Hayes, F.H. Bertrand, C. Audet, and S.T. Kolaczkowski. Catalytic combustion kinetics:
Using a direct search algorithm to evaluate kinetic parameters from light-off curves. The
Canadian Journal of Chemical Engineering, 81(6):1192–1199, 2003.

Bibliography 99

[47] D.R Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expensive black
box functions. Journal of Global Optimization, 13(4):455–492, 1998.

[48] L.A. Sweatlock K. Diest and D.E. Marthaler. Metamaterials design using gradient-free
numerical optimization. Journal of Applied Physics, 108(8):1–5, 2010.

[49] M. Kokkolaras, C. Audet, and J.E. Dennis, Jr. Mixed variable optimization of the number
and composition of heat intercepts in a thermal insulation system. Optimization and
Engineering, 2(1):5–29, 2001.

[50] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm.
ACM Transactions on Mathematical Software, 37(4):44:1–44:15, 2011.

[51] S. Le Digabel, M.A. Abramson, C. Audet, and J.E. Dennis, Jr. Parallel versions of the
MADS algorithm for black-box optimization. In Optimization days, Montreal, May 2010.
GERAD. Slides available at http://www.gerad.ca/Sebastien.Le.Digabel/talks/
2010_JOPT_25mins.pdf.

[52] A.L. Marsden, M. Wang, J.E. Dennis, Jr., and P. Moin. Optimal aeroacoustic shape design
using the surrogate management framework. Optimization and Engineering, 5(2):235–262,
2004.

[53] A.L. Marsden, M. Wang, J.E. Dennis, Jr., and P. Moin. Suppression of airfoil vortex-
shedding noise via derivative-free optimization. Physics of Fluids, 16(10):L83–L86, 2004.

[54] A.L. Marsden, M. Wang, J.E. Dennis, Jr., and P. Moin. Trailing-edge noise reduction
using derivative-free optimization and large-eddy simulation. Journal of Fluid Mechanics,
572:13–36, 2007.

[55] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Operations
Research, 24(11):1097–1100, 1997.

[56] M.S. Ouali, H. Aoudjit, and C. Audet. Optimisation des stratégies de maintenance. Journal
Européen des Systèmes Automatisés, 37(5):587–605, 2003.

[57] R Development Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2004. http://www.R-project.
org.

[58] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, and J. Dongarra. MPI: The Complete
Reference. The MIT Press, Cambridge, Massachusetts, 1995.

[59] T.A. Sriver, J.W. Chrissis, and M.A. Abramson. Pattern search ranking and selection
algorithms for mixed variable stochastic optimization, 2004. Preprint.

http://www.gerad.ca/Sebastien.Le.Digabel/talks/2010_JOPT_25mins.pdf
http://www.gerad.ca/Sebastien.Le.Digabel/talks/2010_JOPT_25mins.pdf
http://www.R-project.org
http://www.R-project.org

100 Bibliography

[60] R. Torres, C. Bès, J. Chaptal, and J.-B. Hiriart-Urruty. Optimal, environmentally-friendly
departure procedures for civil aircraft. Journal of Aircraft, 48(1):11–22, 2011.

General index

Advanced functionalities, 71
AMPL, 52
Asynchronous, see Parallel execution

Barrier
Extreme, 26
Parameter, 48
Progressive, 26

Batch mode, 21–28, 32
Biobjective, 74–75
Blackbox

Batch mode, 3, 35–36, 66
Evaluator, 50
Executable, 22–25, 33
Format, 23
Function, 21
Interface, 52
Library mode, 45–48
Output type, 36
Parallel call, 76
Redirection, 66

Bound constraints, 25, 26, 38

Cache, 42
Cache search, 67
Categorical, see Variable, Type
Categorical variable, 72

Compilation
Library, 43
Parallel, 75

Constraint, see Output type and Barrier
Constraint violation, 48
Coop-MADS, 78
Coordinate Search (CS), 39
CUTEr, 52

Database, see Cache
Direction type, 34, 38, 69
DLL, 52
Dynamic surrogate, 93

Environment variables, 12, 13
Evaluation database, see Cache
Evaluator, see also Blackbox, Executable,

50
Executable, see Blackbox, Executable
Extended poll, see Variable, Type, Categor-

ical
Extreme Barrier, 37

Feasible set, 4, 79
Filter Approach, 37
Fixed variable, 67
Fortran, 52

101

102 General index

GAMS, 52
Generalized Pattern Search (GPS), 39
Global search

LH Search, 42
User search, 81
Variable Neighborhood Search, 80

Halton seed, 67, 69, 78

Inequality constraint, see Barrier
Initial value, 26, 34, 42
Input file

With seed, 66, 76
With tag, 66, 76

Input type, 72
Interface, see Blackbox, Interface

Latin Hypercube, see LH Search
LGPL licence, 6
LH Search, 42

Opportunistic, 67
Seed, 67

Library mode, 43–51
Makefile, 45

Lower bound, see Bound constraints
LT-MADS, 39

MADS, 4
Mesh, 4, 41, 68
Poll, see also Extended poll, 4, 41, 67
Search, 4

Makefile
For libary mode, 45

Matlab, 17, 52
Mesh, see MADS, 4
Message Passing Interface (MPI), 75
Mixed variable, see Variable, Type, Categor-

ical
Mixed variables optimization, 72
Models, 67
Multi-objective, 88
Multiple runs, 52

Neighbors, see Variable, Type, Categorical

Objective, see also Output type
Target, 75

Opportunistic
Cache Search, 67
Evaluations, 67
LH Search, 67

Optimization result, 51
OrthoMADS, 39

seed, 67
Output redirection, 66
Output type, 25, 27, 33, 35, 36

p-MADS, 77
Parallel execution, 75

input file, 76
Parameter, 63

For algorithmic settings, 34, 64
For developers, 91
For outputs and display, 34, 66
For problem definition, 26, 33, 63
How to set, 32, 49
Index, 104
Tuning, 57

Pareto front, 74
Pattern search, 39
Poll, see MADS, 4
Progressive Barrier, 37
PSD-MADS, 78

Quadratic models, 67

Scaling variable, 41, 68
Search, see MADS, 4
Seed, 66, 67, 76
Sensitivy analysis, 79
Signature, see Variable, Type, Categorical
Solution, 51
Starting point, 26, 34, 42
Statistical dynamic surrogates, 93
Surrogate, 68, 72, 88

General index 103

Synchronous, see Parallel execution

Tag, 66, 76
Temporary directory, 42, 66
TGP, 93
Tools

Parallel blackbox evaluations, 75
Parallel cooperative optimization, 78
Parallel space decomposition, 78
Plot history, 59
Sensitivity, 59

Tricks, 57

Upper bound, see Bound constraints
User global search, 81
Utopian point, 75

Variable
Bounds, see Bound constraints
Fixed, 67
Group of, 69
Mixed, 72
Scaling, 68
Type
Binary, 36
Categorical, 36, 59, 71
Integer, 36
Real, 36

Variable Neighborhood Search (VNS), 80

Index of NOMAD parameters

ADD_SEED_TO_FILE_NAMES [Adv][Out], 64
ASYNCHRONOUS [Adv][Alg], 62, 75

BB_EXE [Bas][Pb], 31, 33
BB_INPUT_INCLUDE_SEED [Adv][Alg], 62, 64,

74
BB_INPUT_INCLUDE_TAG [Adv][Alg], 62, 64,

74
BB_INPUT_TYPE [Bas][Pb], 31, 34, 70
BB_OUTPUT_TYPE [Bas][Pb], 31, 33, 34, 38,

72
BB_REDIRECTION [Adv][Alg], 62, 64

CACHE_FILE [Bas][Out], 32, 40, 64, 77
CACHE_SAVE_PERIOD [Adv][Out], 64
CACHE_SEARCH [Adv][Alg], 62
CLOSED_BRACE [Adv][Out], 64

DIMENSION [Bas][Pb], 31
DIRECTION_TYPE [Bas][Alg], 32, 36, 83
DISABLE [Adv][Alg], 62, 84
DISABLE [Adv][Pb], 64
DISPLAY_ALL_EVAL [Bas][Out], 32
DISPLAY_DEGREE [Adv][Out], 64
DISPLAY_DEGREE [Bas][Out], 32, 37, 73
DISPLAY_STATS [Bas][Out], 32, 38, 73

EPSILON [Dev], 88

EXTENDED_POLL_ENABLED [Adv][Alg], 62, 71
EXTENDED_POLL_TRIGGER [Adv][Alg], 62, 71

F_TARGET [Bas][Alg], 32, 73
FIXED_VARIABLE [Adv][Pb], 61, 65

H_MAX_0 [Adv][Alg], 62
H_MIN [Adv][Alg], 62
H_NORM [Adv][Alg], 62
HALTON_SEED [Adv][Alg], 62, 65
HAS_SGTE [Adv][Alg], 62, 67, 78
HISTORY_FILE [Bas][Out], 32, 64

INF_STR [Adv][Out], 64
INITIAL_MESH_INDEX [Adv][Alg], 62
INITIAL_MESH_SIZE [Bas][Alg], 32, 39, 84

L_CURVE_TARGET [Adv][Alg], 62
LH_SEARCH [Bas][Alg], 32, 40, 73
LOWER_BOUND [Bas][Pb], 31, 36

MAX_BB_EVAL [Bas][Alg], 32, 73
MAX_CACHE_MEMORY [Adv][Alg], 62
MAX_CONSECUTIVE_FAILED_ITERATIONS [Adv][Alg],

62, 84
MAX_EVAL [Adv][Alg], 62
MAX_ITERATIONS [Adv][Alg], 62
MAX_MESH_INDEX [Adv][Alg], 62

105

106 Index of NOMAD parameters

MAX_SGTE_EVAL [Adv][Alg], 62
MAX_SIM_BB_EVAL [Adv][Alg], 62
MAX_TIME [Bas][Alg], 32
MESH_COARSENING_EXPONENT [Adv][Alg], 63
MESH_REFINING_EXPONENT [Adv][Alg], 63
MESH_UPDATE_BASIS [Adv][Alg], 63
MIN_MESH_SIZE [Adv][Alg], 63
MIN_POLL_SIZE [Adv][Alg], 63
MODEL_EVAL_SORT [Adv][Alg], 63
MODEL_EVAL_SORT_CAUTIOUS [Dev], 88
MODEL_QUAD_MAX_Y_SIZE [Dev], 88
MODEL_QUAD_MIN_Y_SIZE [Dev], 88
MODEL_QUAD_RADIUS_FACTOR [Dev], 88
MODEL_QUAD_USE_WP [Dev], 88
MODEL_SEARCH [Adv][Alg], 63
MODEL_SEARCH_MAX_TRIAL_PTS [Dev], 88
MODEL_SEARCH_OPTIMISTIC [Adv][Alg], 63
MODEL_SEARCH_PROJ_TO_MESH [Dev], 88
MULTI_F_BOUNDS [Adv][Alg], 63, 72
MULTI_FORMULATION [Dev], 88
MULTI_NB_MADS_RUNS [Adv][Alg], 63, 72
MULTI_OVERALL_BB_EVAL [Adv][Alg], 63, 72,

73
MULTI_USE_DELTA_CRIT [Dev], 88

NEIGHBORS_EXE [Adv][Alg], 63, 70, 85

OPEN_BRACE [Adv][Out], 64
OPPORTUNISTIC_CACHE_SEARCH [Adv][Alg],

63, 65
OPPORTUNISTIC_EVAL [Adv][Alg], 63, 65
OPPORTUNISTIC_LH [Adv][Alg], 63, 65, 73
OPPORTUNISTIC_LUCKY_EVAL [Dev], 88
OPPORTUNISTIC_MIN_EVAL [Adv][Alg], 63
OPPORTUNISTIC_MIN_F_IMPRVMT [Dev], 88
OPPORTUNISTIC_MIN_NB_SUCCESS [Dev], 88
OPT_ONLY_SGTE [Dev], 88

PERIODIC_VARIABLE [Adv][Pb], 61, 86
POINT_DISPLAY_LIMIT [Adv][Out], 64

RHO [Adv][Alg], 63

SCALING [Adv][Alg], 63, 66, 85
SEC_POLL_DIR_TYPE [Dev], 88
SEED [Adv][Alg], 63–65
SGTE_CACHE_FILE [Adv][Out], 64
SGTE_COST [Adv][Pb], 61
SGTE_EVAL_SORT [Adv][Pb], 61
SGTE_EXE [Adv][Alg], 66, 78
SGTE_EXE [Adv][Pb], 61
SNAP_TO_BOUNDS [Adv][Alg], 63
SOLUTION_FILE [Bas][Out], 32, 64, 73
SPECULATIVE_SEARCH [Adv][Alg], 63
STAT_SUM_TARGET [Adv][Alg], 63
STATS_FILE [Bas][Out], 32, 38, 64, 73
STOP_IF_FEASIBLE [Adv][Alg], 63

TAG [Adv][Out], 64
TMP_DIR [Bas][Alg], 32, 40

UNDEF_STR [Adv][Out], 64
UPPER_BOUND [Bas][Pb], 31, 36
USER_CALLS_ENABLED [Adv][Alg], 63

VARIABLE_GROUP [Adv][Pb], 61, 67, 86
VNS_SEARCH [Adv][Alg], 63, 79

X0 [Bas][Alg], 32, 40

	Table of contents
	List of acronyms
	Contents
	Preface
	FIRST NOMAD STEPS
	Introduction
	What is NOMAD?
	Basics of the MADS algorithm
	Using NOMAD
	Licence
	Contact us
	Supported plateforms and environments
	Authors and fundings
	Acknowledgments
	Type conventions

	Software installation and test
	Windows
	Mac OS X
	Unix and Linux
	Matlab for Windows
	Installation directory

	BASIC NOMAD USAGE
	Getting Started
	How to create blackbox programs
	How to provide parameters
	How to conduct optimization

	How to use NOMAD
	Optimization in batch mode
	Basic parameters description
	Optimization in library mode
	Interface examples

	Tricks of the trade
	Tune NOMAD
	Dynamically plot optimization history
	Tools to visualize results
	Use categorical variables

	ADVANCED NOMAD USAGE
	Advanced parameters
	Parameters description
	Detailed information for some parameters

	Advanced functionalities
	Categorical variables
	Biobjective optimization
	Parallel versions
	Sensitivity analysis
	Variable Neighborhood Search
	User search

	ADDITIONAL INFORMATION
	Release notes
	Version 3.6
	Previous versions
	Future versions

	Developer parameters
	Statistical dynamic surrogates
	Bibliography
	General index
	Index of NOMAD parameters

