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Abstract

A multi-objective multi-variable gradient-based fuel cell optimization

framework is presented in order to optimize fuel cell membrane electrode

assembly fabrication. The optimization target is to simultaneously max-

imize the cell’s current density at a given voltage and minimize its pro-

duction costs. The design variables are electrode composition parameters

such as platinum loading and porosity. To develop this framework, a two-

dimensional through-the-channel single-phase membrane electrode assem-

bly model is implemented and coupled to an optimization algorithm. In

order to solve the optimization problem in a reasonable time, a gradient-
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based optimization method in conjunction with analytical sensitivities of

the electrode model with respect to design parameters such as amount

of electrolyte are used. Results show the trade-offs between performance

and cost and illustrate that large gains in performance and reductions in

production costs are possible. They also illustrate the problems associated

with formulating the optimization problem without taking into account

production costs.

Keywords: fuel cell, catalyst layer, gas diffusion layer, platinum load-

ing, sensitivity analysis, finite elements

1 Introduction

Reducing production cost and improving performance, reliability and durabil-

ity remain critical prerequisites for commercialization of polymer electrolyte

membrane fuel cells. Past investigations on electrode design for optimal perfor-

mance [1–5] and low platinum loading [6–8] have been mainly based on trial-

and-error and parametric studies. When the number of design variables becomes

large, a more systematic and rational approach to optimization of the electrode

structure and composition is necessary. One such case is when trying to design

a complete membrane electrode assembly (MEA).

The anode and cathode gas diffusion layer (GDL) and catalyst layer (CL)

have multiple functions that require a combination of different materials and

structures. For example, in the GDL, the electron conductive material provides

the necessary electrical conductivity, while the porous structure allow reactant

transport. In order for the fuel cell to provide the best possible performance at

a minimum cost, the optimal porosities and amounts of different materials in

the GDL and CL need to be determined. Since all these design parameters are

coupled, the task of finding the optimal amount of material to reduce production
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cost and maximize performance becomes in fact a multi-objective, multi-variable

problem that depends on the fuel cell operating and geometric conditions. To

date, only four research groups - Song et al. [9, 10], Grujicic et al. [11–13],

Mawardi et al. [14] and Secanell et al. [15–18] - have attempted to perform single

cell fuel cell optimization using a physical or theoretical model. In all cases, a

single objective optimization problem was solved and only Song et al. [9, 10]

and Secanell et al. [15–18], have attempted to optimize electrode composition

by using a one-dimensional cathode model and a two-dimensional cathode and

anode model respectively.

In this paper, a numerical optimization methodology recently developed by

the authors [16,17] and used to investigate the optimal cathode composition of

standard fuel cells is extended to allow determination of the optimal composition

and structure of an entire membrane electrode assembly. Section 2 of this paper

describes the MEA model. Section 3 presents the optimization formulation and

the computational framework. Using the computational framework, a multi-

objective problem is solved and Pareto fronts for cost and performance are

obtained in section 4, and the amounts of ionomer or electrolyte, platinum and

carbon in both the anode and cathode CLs and the porosities in the GDL

determined from the optimization process are presented and analyzed. The

results demonstrate the importance of using a multi-objective formulation and

highlight in particular the trade-offs between cost and performance. To the

knowledge of the authors this represents the first attempt in the literature to

apply numerical optimization to solve a multi-objective optimization problem

for a complete membrane electrode assembly.
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2 Membrane Electrode Assembly Model

In this section, a model accounting for the salient transport phenomena in a

complete membrane electrode assembly is outlined. A complete description of

the fuel cell model is given in previous work [16,17,19]. The model considers a

two-dimensional section of the fuel cell and is based on the following assump-

tions:

• The fuel cell is at steady state and operates at constant temperature and

pressure.

• The cathode is fed with humidified air.

• The anode is fed with humidified hydrogen.

• The gas diffusion layers are composed of a porous fibrous matrix.

• The catalyst layer is formed by agglomerates made of a mixture of plat-

inum supported on carbon and ionomer membrane electrolyte and sur-

rounded by void space [17].

• The electochemical reaction occurs inside the agglomerates.

• The transport of reactants from the gas channels to the catalyst layer

occurs only by diffusion to the agglomerate surface and then by dissolution

and diffusion through the ionomer to the reaction site.

• The transport of water inside the electrolyte in the membrane and CL is

driven by electro-osmotic drag and diffusion [19–21].

• The water content in the membrane and the gas phase in the CL are

assumed to be in equilibrium throughout the CL, therefore they are related

by means of the sorption isotherm.
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• The transport of protons takes place only through the ionomer phase and

it is governed by Ohm’s law.

• The transport of electrons takes place only through the solid phase, i.e. the

carbon fibers in the GDL and the mixture of carbon supported platinum

in the catalyst layer, and is governed by Ohm’s law.

2.1 Model equations

The governing equations for the complete MEA are

R(u,p) =



∇ · (cgD
eff
O2

∇xO2)− SO2 = 0

∇ · (cgD
eff
w ∇xw)− (Sw + Sλ) = 0

∇ · (σeff
m ∇φm)− SH+ = 0

∇ · (σeff
S ∇φS)− Se− = 0

∇
(
nd

σeff
m

F ∇φm + ρdry

EW Deff
λ ∇λ

)
+ Sλ = 0

(1)

where the unknowns are the oxygen mole fraction, xO2 ; the water mole fraction,

xw; the electrolyte (membrane) and electronic potentials, φm and φS respec-

tively; and, the membrane water content, λ. The effective transport parameters

Deff
O2

, Deff
w , Deff

λ , σeff
m and σeff

S are different in the membrane, GDL and CL

and depend nonlinearly on the design variables [17]. The solution methodology

requires all equations to be solved in all the domains, i.e. GDL, CL and mem-

brane. However, some of the corresponding transport processes do take place

in some of the domains. This redundancy is simply addressed by setting the

corresponding transport parameters to be essentially nil.

The source terms in the system of equations are given by

SO2 =

 0 in anode CL, GDL and membrane

1
4F ∇ · i in CL

(2)
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Sw =

 0 in anode CL, GDL and membrane

− 1
2F ∇ · i in cathode CL

(3)

SH+ =


0 in GDL and membrane

∇ · i in cathode CL

−∇ · i in anode CL

(4)

Se− =


0 in GDL and membrane

−∇ · i in cathode CL

∇ · i in anode CL

(5)

and

Sλ =

 0 in GDL and membrane

k
ρdry

EW (λeq − λ) in both CLs
(6)

where λeq is given by the sorption isotherm reported by Hinatsu et al. [22] at

the corresponding water vapour activity value in the specific location in the CL.

The term ∇ · i is in fact a nonlinear function that depends on the unknowns

and the design variables. As an example, in the cathode the volumetric current

density, ∇ · i, is

∇ · i = 4F
ptotxo2

HO2,N

(
1

Erkc(1− εcl
V )

+
(ragg + δagg)δagg

aaggraggDO2,N

)−1

(7)

with units of A/cm3 and with the reaction kinetics, kc, given as a function of

the state variables

kc =
Aviref

0

4F (1− εcl
V )cref

o2

exp
(
−αcF

RT
(φs − φm)

)
(8)

The different parameters in kc are only a function of the design variables and

they are described in detail in previous published work [17]. The parameter Av
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computes the active area available for the reaction given the platinum loading,

type of catalytic particles and catalyst layer thickness. It accounts for the

platinum loading and the platinum activity depending on the particle size and

dispersion on the carbon support according to the cyclic voltammetry data

reported by the catalyst manufacturer, in this case E-TEK data is used [23].

Note that equation (8) does not account for platinum poisoning and therefore all

sites are assumed to be available for the reaction. To account for CO poisoning

an approach similar to those reported in references [24, 25] should be used.

An overview of the anode model and source terms is given in [18]. Finally, a

detailed derivation of the governing equations and a numerical and experimental

validation of the model can be found in reference [19].

2.2 Computational domain and boundary conditions

The two-dimensional cross-section representation of the membrane electrode as-

sembly should include both CLs and GDLs and the membrane with appropriate

boundary conditions for the gas channel-GDL and current collector-GDL in-

terfaces. It is assumed here that the solution is continuous on the interfaces

between layers. Taking advantage of geometric symmetry, the computational

domain includes only half of the gas channel and half of the current collector,

as shown in Figure 1. The boundary conditions assume a zero flux boundary

condition for all state variables but at the anode and cathode current collector

(segments A-F and B-C in Figure 1) where solid phase voltage is specified and

at the anode and cathode gas channel (segment F-E and C-D) where the mole

fraction of the reactants is given.
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2.3 Input parameters

The input parameters to the membrane electrode assembly model are specified

in Tables 1, 2, 3 and 4 for the operating conditions and geometry, anode elec-

trode, membrane and cathode electrode respectively. The data presented here

is obtained from the literature and the source of the data is specified next to

the value.

The geometrical parameters in Table 1 are prescribed standard values for

the GDL and CL. The thickness of the membrane is that of a Nafion 1135

membrane. The operating conditions are the same as for Bender et al. [26].

These operating conditions are chosen to readily validate the computational

model (see Section 2.4). Note that the relative humidity (RH) is set to be 75%

since the authors in [26] report humidification levels slightly below 100%RH.

The physical, structural and electrochemical parameters for the anode and

cathode electrode are given in Tables 2 and 4 respectively. These values are also

obtained from the literature. The diffusion coefficients and Henry’s law constant

are reported for the given operating conditions. The values for GDL and CL

conductivities are obtained by curve fitting experimental data, such as that

reported by Pantea et al. [27] for carbon black. The methodology for fitting these

parameters is given in references [18,19]. The structural parameters are given by

the MEA information provided in reference [26] for model validation. Finally,

the amount of electrolyte inside the agglomerate is a fitting parameter and is set

to ensure a reasonable volume fraction of each material in the CL. The structural

parameters in Table 2 result in solid phase, electrolyte and porosity values of

0.409, 0.384 and 0.207 respectively. Note that the composition parameters and

porosities are set for validation and the base case conditions, but are allowed

to vary in the optimization process which in fact does yield different values

as will be discussed subsequently. There is great uncertainty regarding the
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agglomerate radius and thin film surrounding the agglomerate. Experimental

observations from TEM and SEM images suggest values ranging from 0.01 to

3 µm and 0 to 80 nm respectively [5, 28–31]. The values of 1µm and 80nm are

used because they lie within the range of values reported in the literature and

provide a good fit to the experimental polarization curve in reference [26]. The

electrochemical data used for the anode corresponds to the recently proposed

dual-path kinetics model [32]. For the cathode, the low voltage kinetics data

reported by Parthasarathy et al. [33, 34] is used.

The membrane properties are given in Table 3. Of these parameters, the con-

stant k is the most important as it is used to properly couple the membrane wa-

ter content to the water content in the catalyst layer. This constant needs to be

set at a sufficiently large value to ensure consistency with the sorption isotherm.

As such, k should not be considered to represent an adsorption/desorption rate.

2.4 Experimental validation

The (through-the-channel) two-dimensional model presented here does not ac-

count for convective transport and consumption of reactants along the gas flow

direction, and is thus representative of operating conditions corresponding to

very high stoichiometries in both cathode and anode channels. Thus low sti-

ochiometry experimental data commonly used for validation, e.g. Lin Wang

et al. [35, 36], is not appropriate here. Since polarization curves at high stoi-

chiometries are seldom published, data from the first segment of a segmented

cell study is used for validation. Several research group have developed and

performed such segmented cell experiments [26, 37–43]. In this paper, the data

from Bender et al. [26] is used for validation, as this work documents in detail

the MEA properties and experimental setup. Tables 1, 2, 3 and 4, provide the

input data for the simulations. All the data used for the validation is taken
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either from the experimental setup given in [26] or sources referenced in section

2.3.

Figure 2 compares the polarization curve reported by Bender et al. for the

first segment of the cell and the curve obtained using the present numerical

model. It should be noted that the humidifier temperature in the experiments

was equal to the cell temperature and the inlet air should be fully saturated.

However, Bender et al. report that even in this case, the air was not fully

humidified. Therefore, polarization curves for both 75% and 100% relative hu-

midities were computed and are plotted in Figure 2. The experimental curve

falls between the two predicted polarization curves, and good overall agreement

between numerical and experimental data is obtained over the whole range of

operating voltages.

3 Optimization Problem

The mathematical formulation for multi-objective optimization is presented

with a focus on simultaneous optimization of the MEA in terms of both perfor-

mance (minimum losses) and production costs (minimum platinum content).

3.1 Objective functions

Fuel cell performance is commonly described in terms of its polarization behav-

ior, i.e. voltage versus current density. Performance can be improved either

at a single operating voltage (single-point optimization) or in a specific range

of operating conditions (multi-point or robust optimization). If the goal is to

optimize the performance of current MEA designs at a given operating point,

e.g. at a fixed cell voltage, the objective function can be expressed simply as

the current density at the given voltage. On the other hand, if the goal is to

maximize performance in a given operating range, the design objective is less
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straightforward to define and express mathematically. A possible representa-

tion of the objective would be to either optimize a weighted sum of current

densities at several points in the operating range or to optimize the integral

of the polarization curve in the given range. Multi-point optimization is an

active area of research and there are several issues regarding the choice of the

objective [44, 45]. In this work we focus on single-point optimization problems

where the objective function that quantifies performance is given by the current

density at the desired voltage.

Cost reduction is the second objective of the optimization. A recent study by

General Motors researchers identifies polymer electrolyte membrane and plat-

inum (Pt) costs as the key barriers to achieving the US$30/kW target for large

scale commercialization [46, 47]. Whereas the cost of platinum is not expected

to decrease, the cost of polymer electrolyte membranes could potentially be re-

duced by a factor of ten according to electrolyte manufacturers such as DuPont

and Asahi Chemical [48]. Consequently, it is assumed that platinum loading is a

good indicator of a PEMFC cost and is thus used here as the objective function

representing cost. The costs of the electrolyte, bipolar plates, balance of plant

and control system are assumed constant. Future work should address these

issues with a more complex cost analysis module that includes the additional

materials and components as well as their amortization depending on fuel cell

degradation rates.

3.2 Design variables

The anode and cathode catalyst layer structure and compositions are charac-

terized by five parameters: platinum loading, mPt; mass percentage of plat-

inum catalyst on the support carbon black, Pt|C; agglomerate radius, ragg;

agglomerate thin film thickness, δagg; and electrolyte volume fraction inside
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the agglomerate, εagg [17]. Three of these parameters can be controlled during

manufacturing and are thus used as design variables: the platinum loading; the

mass percentage of platinum catalyst on the support carbon black; and, the

electrolyte volume fraction inside the agglomerate. The GDL porosity is also

included as a design variable.

The platinum loading can be controlled when dispensing the amount of cat-

alyst in the ink used to create the CL. The platinum to carbon ratio can also be

controlled by selecting the appropriate catalytic particles. Manufacturers usu-

ally provide a selection of catalytic particles with different platinum to carbon

ratios ranging from 0.05%wt. platinum on carbon to platinum black [49, 50].

The ionomer film and the amount of ionomer inside the agglomerate provide

the total amount of electrolyte in the catalyst layer. It is difficult to discern

how much of the electrolyte will become part of the agglomerate and how much

will be used to create an electrolyte film. A study performed by Lee et al. [31]

suggests that the thickness of the electrolyte film surrounding the agglomerate

increases rapidly when the electrolyte content in the catalyst layer increases

from zero to 10%wt. and then remains almost constant. Following Lee et al.,

in this work it is assumed that the electrolyte film surrounding the agglomerate

is constant and equal to 80nm. Adjustments to this value should be considered

when using different methods of preparation of the catalyst layer. The radius of

the agglomerate is also considered constant, even though, Song et al. [51] suggest

that this value can also be varied by using different manufacturing processes and

ink preparations. The effect of the agglomerate radius and the thin film was

already discussed in a our previous work [17], where it was shown that these

two parameters should not be included as design variables in the optimization

problem because they do not present any trade-offs. These parameters repre-

sent mass transport resistances due to current CL manufacturing methods and,
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their optimization is trivial and yields values of zero.

3.3 Optimization of the MEA cost and performance

The problems of maximizing performance and minimizing cost need to be solved

simultaneously. There is a large array of methods to solve multi-objective prob-

lems and to obtain the set of Pareto optimal solutions [52–57]; one of the most

widely used methods is the weighted sum method [53]. In this method, the mul-

tiple objectives are transformed into a single objective function by multiplying

each objective by a weighting factor and summing up all contributions such that

the final objective is:

Jweighted sum = w1J1 + w2J2 + · · ·+ wnJn (9)

where wi are the weighting factors. If the sum of all weights is equal to one,

then the weighted sum is said to be a convex combination of objectives, and if

all objectives are convex, the weighted sum objective will also be convex.

In general, in a multiple objective optimization problem there is no global

optimum; specifically for the problem at hand there exists a set of optimal

solutions corresponding to a set of weighting factors. These solutions are rep-

resented as a so-called Pareto curve, whereby for a performance-cost objective

function problem moving from one point on the curve to the other improves one

objective and worsens the other. None of these points are intrinsically superior,

and the choice of optimized solution depends on techno-economic considerations

specific to the application (e.g. portable vs. automotive). The Pareto front can

be obtained by systematically changing the weights and solving the given op-

timization problem. The weighted sum method is easy to implement and it

is readily understood, however it has two drawbacks: 1) a uniform spread of

weight parameters rarely produces a uniform spread of points on the Pareto set;
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and 2) non-convex parts of the Pareto set cannot be obtained [58].

In this paper, the weighted sum method is used because we are mainly

interested in a small number of solutions in the Pareto set and the physical

meaning of the weights is easy to understand. Furthermore, the method is

shown to provide good results for most engineering applications and is readily

implemented in DAKOTA [59], the OpenSource optimization program used.

The MEA multi-objective optimization problem is formulated using a simple

weighted sum method as

minimize −w1i(dV ) + w2(mPt,c + mPt,a)

w.r.t.: mPt,c, εagg,c, P t|Cc, ε
gdl
V,c,

mPt,a, εagg,a, P t|Ca, εgdl
V,a

subject to: 0 < εcl
V,c ≤ 1; 0 < εcl

S,c ≤ 1; 0 < εcl
N,c ≤ 1

0 < εcl
V,a ≤ 1; 0 < εcl

S,a ≤ 1; 0 < εcl
N,a < 1

(10)

where i(dV ) represents the current density at a given voltage across the MEA,

the subscripts c and a represent the design variables in the cathode and anode

respectively; εcl
V,c, εcl

S,c and εcl
N,c are constraints in the volume fraction of each

material in the CL; w1 + w2 = 1 and where a negative sign has been added in

front of the performance objective, i.e. the current density, in order for the two

objectives to be minimization problems. In order for the weighted sum method

to search the Pareto set effectively, objectives must be scaled to have similar

values [60]. In this case, both current density and total platinum loading are of

the same order of magnitude and scaling is not necessary.

In addition to the constraints shown in equation (10) all design variables are

bounded. The design variable bounds are shown in Table 5.

In the optimization problem above, one of the objective functions is given by

the fuel cell current density at a given MEA voltage. The current density per
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unit area of a fuel cell can be obtained during postprocessing by integrating the

volumetric current density over the volume of either the anode or the cathode

CL,

f(u,p) = i(xO2 , φS , φm;mPt,c, εagg,c, P t|Cc, ε
gdl
V,c,mPt,a, εagg,a, P t|Ca, εgdl

V,a)

=
1
H

∫ H

0

∫ L

0

∇ · idxdy (11)

where ∇ · i is given in equation (7), H is the height of the domain and L is

the width of the domain, i.e. the thickness of the CL. The second objective,

the platinum loading, is given directly by the platinum loading design variables.

The constraint equations in the optimization problem in (10) are directly given

by the analysis model. Hence, no extra computations are required to determine

the second objective and the constraints.

In order to solve the optimization problem effectively using gradient-based

optimization algorithms, the analytical sensitivity equations of the model with

respect to the design variables are obtained, as opposed to the commonly used

forward differences [9,11,12]. The use of analytic sensitivity equations increase

accuracy of the sensitivities and reduces the computational cost of the design

framework, an important consideration for development of a design framework

that can be used for large scale optimization of fuel cells. The mathematical for-

mulation used to obtain the sensitivity equations is introduced in the Electronic

Supplementary Material.

3.4 Design and optimization numerical framework

The MEA model together with the analytic sensitivity equations of the objective

function and constraints are discretized using finite elements and solved using

the deal.II finite element libraries [61, 62]. The MEA finite element model is
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then coupled to the optimization package DAKOTA [59], as shown in Figure

3. In this figure, the three main iterative loops can be identified. The inner

or analysis loop is used to solve the nonlinear governing equations by means

of Newton’s algorithm and the finite element method. The middle or adaptive

refinement loop is used to check the accuracy of the solution and adapt the

computational mesh as necessary using an a posteriori error estimator. The

outer or optimization loop is used to change the design parameters in order

to obtain an improved design. Convergence of the optimization algorithm is

achieved either when the relative change in the objective function is less that

10−3 or the L2 norm of the gradient of the objective function is less than 10−3.

A more detailed explanation of the design framework can be found in [19].

4 Discussion and Results

In this section, Pareto optimal solutions are obtained for six sets of weights.

Table 6 shows the values for the weights. w1 is the current density weight and

w2 is the cost weight. The weights are selected to assign different importance

to each objective. Set 1 is equivalent to solving a single objective performance

maximization problem. Sets 2 and 3 ascribe higher importance to performance,

but at the same time, penalize cost. Set 4 gives similar importance to perfor-

mance and cost. Notice, however, that the weights being equal does not imply

that the two objectives are given exactly equal importance since this will also

depend on the values of both objectives. Set 5 and 6 put more weight on cost

than performance. Notice that a set with w2 equal to one is not considered as

it leads to a trivial and impractical solution: the minimum cost with no perfor-

mance constraint is obtained with zero amount of catalyst, which would result

in no reaction and a zero current density.

Since optimization is performed at a given operating voltage, three Pareto
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fronts are also obtained at three different operating voltages. The Pareto fronts

at different operating voltages represent the optimal designs that can be ob-

tained when optimizing the fuel cell for that specific voltage and are obtained

by solving the optimization problem in equation (10) for the sets of weights in

Table 6. Note that it might not be possible to achieve a design that lies on top

of all three Pareto fronts simultaneously.

Figure 4 shows an approximation of the three Pareto fronts obtained by

solving the optimization problem in equation (10) with the weights in Table

6 for three operating points corresponding to cell operation at low, medium

and high current densities, i.e. at low, medium and high MEA voltage losses.

All optimization problems converged, except for set 6 at high current densities.

Figure 5 shows the evolution of the two objectives and the combined objective

(left) and the evolution of the design variables for Set 3 at 0.6V voltage across

the MEA. The lack of convergence for set 6 at dV = 0.8V was due to convergence

problems in the analysis code at high currents and low platinum contents. The

design variables for the initial design are {mPt,c, εagg,c, Pt|Cc, εgdl
V,c,mPt,a, εagg,a,

Pt|Ca, εgdl
V,a} = {0.2, 0.35, 0.2, 0.6, 0.2, 0.35, 0.2, 0.6}, which corresponds to

values for a typical MEA with the same composition for anode and cathode

[26]. An optimization run with a given set of weights usually converges after

approximately 20 iterations and approximately 30 minutes of CPU time on a 2

GHz Mac PowerPC G5.

In Figure 4, the points that are on the right of the Pareto fronts represent

those points for the weight set 1, i.e. maximum performance regardless of cost.

As the points move towards the left, the optimal Pt cost and performance for

the optimal designs obtained by solving the optimization problem for weight

sets 2 to 6 are shown. The trivial solution of zero current density for zero

catalyst is also shown. Examining the Pareto front it is clear that there is a
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trade-off between performance and cost. The highest values of current density

are obtained when the platinum loadings are high, i.e. of the order of 2mg/cm2.

Once cost is included as an objective, the platinum loading is reduced at the

expense of performance.

Figure 4 also shows three very distinct areas. At the far right, the slope of

the Pareto fronts is small. This means that at any operating voltage a large

increase in cost is necessary for a small increase in performance. Similarly, at the

far left, the slope is very steep. In this area, in order to obtain an optimal design

with a low Pt cost, a very large drop in performance is required. In the middle of

the graph, for platinum loadings between 0.1 and 0.6 mg/cm2 is where the best

trade-offs between Pt cost and performance are achieved. Looking at the Pareto

fronts it is clear that the designs obtained using maximum performance only as

an objective are not the best designs. These designs are extremely expensive

when compared to the design obtained from weight set 2 which provides current

densities well above 0.8A/cm2 at 0.6V across the MEA at one third of the price.

This highlights the advantages of using multi-objective optimization. Inside

the range of platinum loadings between 0.1 and 0.6 mg/cm2, all designs offer

some advantages and it is up to the designer to select the most appropriate

design depending on the application. For example, if the fuel cell is to be used

for a mass-produced automobile, maybe a design with a platinum loading of

0.2mg/cm2 provides the necessary performance. However, for a one-of-a-kind

high performance automobile, a design with higher platinum loadings of around

0.6mg/cm2 might be more appropriate. Platinum loadings above 0.6mg/cm2

are not likely to be used because the achieved performance increase by increasing

platinum loading do not justify the extra cost.

Regarding the applicability of the weighted sum method, the results in Fig-

ure 4 using the different weights are well spaced and resolve the Pareto front
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adequately. Only for very large weights for cost the weight sum method starts

to cluster points in the Pareto set. However, at those values performance is

already unacceptably low for any application. Therefore, in this case the sum

weighted residual is an appropriate method to obtain the Pareto curve. Figure

6 shows a well-populated Pareto front and the weights used to obtain the Pareto

plot for a voltage across the MEA of 0.6V. The figure shows the convexity of

the Pareto front and no discontinuities are observed, further confirming the ap-

plicability of the weighted sum method in this case. The front is well populated

in all areas but at very high performance. The latter is due to the large impact

of introducing cost as an objective. The blue points in Figure 6 are selected as

example of a set of well distributed weights. They show that such set yields a

well distributed Pareto front.

Figures 7 and 8 show the value of the cathode design variables and the CL

volume fraction for all designs in the Pareto curves in Figure 4 at the three

different operating voltages. Looking at the figures from right to left, they show

the evolution of the design variables and the volume fraction as cost is considered

more important for the optimal design at each of the three design voltages. The

most interesting parameters from these curves are the platinum loading and the

platinum to carbon ratio. For all operating conditions, for the optimal Pareto

design with set 1, platinum loading reaches its upper bound of 1mg/cm2. As

the cost objective is ascribed increasing importance, both platinum loading and

platinum to carbon ratio start to decrease. Initially with a sharp drop, from

set 1 to 2, and then more gradually. Furthermore, both curves follow a very

similar trend. This can be explained by examining the evolution of the solid

phase volume fraction in Figure 8. Even though, the platinum loading drops

sharply, the solid phase volume fractions remain quite similar with a slight

decrease as cost becomes more important. The slight decrease is mainly due to
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the reduction in current density for the latter designs and therefore; a decrease

for the necessity for highly electrical conductive material in the CL. From the

figures, it is clear that there is a strong coupling between these two parameters

so that electrical conductivity in the CL is maintained. The electrolyte volume

fraction inside the agglomerate and the GDL porosity remain almost constant

regardless of the Pareto optimal solution.

Comparing the designs obtained at different operating voltages in Figure 7,

an increase in electrolyte volume fraction inside the agglomerate is observed as

the voltage across the MEA is increased. Note that an increase in the voltage

across the MEA results in an increase in current density. GDL porosity increases

steadily with increased operating voltage across the MEA. The latter most likely

due to the increase in the oxygen consumption with the increase current density.

The increase in GDL porosity results in a reduction of the mass transport lim-

itations. Finally, for the different voltages, the Pt loading and the platinum to

carbon ratio follow similar trends. However, at lower MEA voltages the Pt load-

ing appears to be more reluctant to decrease for the same set of weights. This

is because at low MEA voltage, i.e. low overpotential, the fuel cell is limited

by the ORR kinetics. Looking at the CL volume fractions in Figure 8 similar

trends are observed. As the voltage across the MEA is increased, CL porosity

increases. In the CL the total amount of electrolyte is highest at medium op-

erating voltages, this is because at medium current densities Ohmic losses in

the electrolyte dominate. Finally, the solid phase volume fraction decreases as

current increases to leave more space to the other two phases.

Figures 9 and 10 show the value of the anode design variables and the CL

volume fraction for all designs in the Pareto curves. Looking at Figure 9, the

platinum loading is reduced by almost one order of magnitude almost immedi-

ately after cost is added to the objective. For set 1 (maximum performance at
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any cost) the platinum loading was of the order of 0.5mg/cm2. This value drops

to almost 0.05mg/cm2 in set 2 and then remains almost constant for sets 3 to

6. Similarly to the cathode, the platinum to carbon ratio follows the platinum

loading behaviour due to their close coupling. The large reduction in platinum

loading from set 1 to set 2 comes at a small expense in performance. This result

is in agreement with the results published recently by Karan [63] and Secanell

et al. [18] where an anode model was used to minimize platinum loading at a

given current density and with the experimental observations of Gasteiger et

al. [47]. It was also shown by the authors that reducing the anode CL thickness

could result in further platinum loading reductions; therefore, highlighting the

possibility to introduce geometric design variables into the design process. The

electrolyte volume fraction inside the agglomerate and the GDL porosity follow

similar trends to the cathode. An interesting difference between the anode and

the cathode is the extremely low GDL and CL porosity in the anode design

at low operating voltages. This low porosity is then increased at high current

densities. This increase in porosity occurs in order to improve water transport

to the membrane and not to improve hydrogen transport.

4.1 Final remarks

Comparing the results obtained from the previous optimization formulations

[16,17,19] and the proposed multi-objective optimization formulation, it is clear

that cost must be included in the optimization objective. If only performance is

optimized, the result is a very expensive electrode. The results also show the im-

portance of designing MEAs with different anode and cathode electrodes in order

to save on Pt costs. The presented optimization results suggest that platinum

reductions in the anode to values of less than 0.05mg/cm2 could be achieved

with very little penalty in performance. Furthermore, competitive performances
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at any operating condition can be obtained with total platinum loadings on the

order of 0.2 to 0.1 mg/cm2. Looking at Figure 4, for a cell voltage of 0.593V,

a current density of 0.7 and 0.8 A/cm2 can be achieved with platinum load-

ings of 0.1 and 0.2 mg/cm2. These values represent a Pt-specific power density

of the cell with an optimized MEA of 0.241 and 0.422 gPt/kW respectively.

The target for large-scale implementation is 0.4 gPt/kW [47]. Therefore, the

results show that, by optimizing current PEMFC MEAs, targets could be met

for future fuel cell commercialization. These results are even more encouraging

considering there is potentially further room for improvement from optimization

of geometrical and/or operating conditions parameters.

5 Conclusion

A fuel cell analysis and design framework has been presented. This analy-

sis and design tool consists of a two-dimensional, through-the-channel fuel cell

model coupled to a gradient-based optimization algorithm. A multi-objective

optimization problem has been formulated, implemented and solved using this

design framework. The results illustrate and quantify the existing trade-offs

between cost and performance. The Pareto fronts presented show that there is

only a specific range of designs that present a good trade-off between Pt costs

and performance. This is shown to be true for any design regardless of the

desired operating voltage. The designs that offer the best trade-off between

Pt cost and performance have total Pt loadings between 0.1 and 0.6mg/cm2

and produce current densities in the range of 1.25 to 1.35, 0.7 to 0.85 and 0.1

to 0.25A/cm2 depending on the operating voltage for which the design is op-

timized, i.e. 0.8, 0.6, 0.4V across the MEA respectively. The optimal designs

exhibit a very different composition for anode and cathode, demonstrating the

advantages of developing MEAs with different anodes and cathodes. The opti-
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mal designs that offer the best trade-offs have anode Pt loadings that are one

to two orders of magnitude less than the cathode ones.

The new MEA design methodology presented in this paper is rational and

systematic and its application demonstrates the potential benefits of using multi-

objective optimization for fuel cell design. An important aspect of this method-

ology is its applicability to large scale optimization of fuel cells. However, fur-

ther work is required on several fronts. The results presented here are obtained

taking into account only two objectives. The optimal CL compositions might

change once durability and reliability are included in the optimization. The

results depend of course on the physico-chemical processes accounted for in the

model; the model presented here does not for instance account for possible CO

poisoning in the anode. The introduction of this phenomena might yield designs

requiring higher Pt loadings in the anode. The multi-objective approach high-

lights the need for a holistic approach for designing optimal fuel cell systems.

Given the large number of design objectives and design parameters, such an

approach is only feasible by means of numerical optimization.
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Table 1: Membrane electrode assembly geometry and operating conditions
Geometry
Anode GDL thickness, Lgdl

a , [cm] 2.5× 10−2, [64]
Anode CL thickness, Lcl

a , [cm] 1.0× 10−3, [64]
Membrane thickness, Lm, [cm] 0.89× 10−2, Nafion 1135
Cathode CL thickness, Lcl

c , [cm] 1.0× 10−3, [64]
Cathode GDL thickness, Lgdl

c , [cm] 2.5× 10−2, [64]
Channel width, [cm] 0.1, [64]
Current collector width, [cm] 0.1, [64]
Cell operating conditions
T [K] 353, [64]
Anode operating conditions
p, [atm] 3, [64]
xH2 0.88326 (75%RH)
xw 0.11674 (75%RH)
Cathode operating conditions
p, [atm] 3, [64]
xO2 0.18549 (75%RH)
xN2 0.69777 (75%RH)
xw 0.11674 (75%RH)
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Table 2: Anode gas diffusion layer and catalyst layer physical and electro-
chemical properties

Constants
ρPt, [g · cm−3] 21.5, [9]
ρc, [g · cm−3] 2.0, [9]
ρN , [g · cm−3] 2.0, [9]
Anode GDL and CL physical properties
DH2,w, [cm2 · s−1] 0.34952, [65]
HH2,N , [Pa·cm3

mol ] 6.69× 1010, [63]
DH2,N , [cm2 · s−1] 12.8× 10−6, [63]
σgdl

S,XX , [S · cm−1] 16.03
σgdl

S,Y Y , [S · cm−1] 272.78
σcl

S , [S · cm−1] 88.84
Anode GDL and CL structural properties
εgdl
V 0.6

mPt, [mg/cm2] 0.2, [26]
Pt|C, [-] 0.2, [26]
ragg, [µm] 1.0, [64]
εagg, [-] 0.35, this work
δagg, [nm] 80, [64]
Anode CL electrochemical properties
jOT ,[A · cm−2] 0.47, [32]
jOH ,[A · cm−2] 0.01, [32]
γ,[-] 1.2, [32]
cref
H2

, [mol/cm3] 0.59× 10−6, [63, 66]

Table 3: Membrane physical and electro-chemical properties
Membrane properties
EW , [g/mol] 1100, [20]
ρdry, [g/cm3] 2.0, [20]
k, [1/s] 10000, this work
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Table 4: Cathode gas diffusion layer and catalyst layer physical and electro-
chemical properties

Constants
ρPt, [g · cm−3] 21.5, [9]
ρc, [g · cm−3] 2.0, [9]
ρN , [g · cm−3] 2.0, [9]
Cathode GDL and CL physical properties
DO2,N2 , [cm2 · s−1] 0.091368, [65]
Dw,N2 , [cm2 · s−1] 0.098919, [65]
HO2,N , [Pa·cm3

mol ] 3.1664× 1010, [64]
DO2,N , [cm2 · s−1] 8.45× 10−6, [64]
σgdl

S,XX , [S · cm−1] 16.03
σgdl

S,Y Y , [S · cm−1] 272.78
σcl

S , [S · cm−1] 88.84
Cathode GDL and CL structural properties
εgdl
V 0.6

mPt, [mg/cm2] 0.2, [26]
Pt|C, [-] 0.2, [26]
ragg, [µm] 1, [64]
εagg, [-] 0.35, [64]
δagg, [nm] 80, [31,64]
Cathode CL electrochemical properties
α 1, [33,34,67]
n 4, [33,34,64]
γ 1.0, [33,34,64]
iref
0 , [A · cm−2] 2.707× 10−8, [33, 34]

cref
O2

, [mol · cm−3] 0.725× 10−5, [33, 34]

Table 5: Initial upper and lower bounds for the design parameters used to
optimize the catalyst layer

Design variable Upper bound Lower bound
mPt,c and mPt,a, [mg/cm2] 1.0 1e-4
εagg,c and εagg,a, [−] 0.9 0.1
Pt|Cc, [−] and Pt|Ca, [−] 1.0 0.05
εgdl
V,c, [−] and εgdl

V,a, [−] 0.9 0.1
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Table 6: Weights used to obtain Pareto optimal solutions
w1 w2

Set 1 1.0 0.0
Set 2 0.9 0.1
Set 3 0.75 0.25
Set 4 0.5 0.5
Set 5 0.25 0.75
Set 6 0.1 0.9
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Fig. 1 Computational domain and initial grid used to solve the equations

of the MEA model.

Fig. 2 Polarization curves from experimental data and numerical data at

75% and 100% RH.

Fig. 3 Implementation of the multivariable optimization framework with

adaptive refinement and analytic sensitivities.

Fig. 4 Pareto front at three different operating conditions.

Fig. 5 Evolution of the objectives (left) and the design variables (right)

during the multiobjective optimization problem with w1 = 0.75

and w2 = 0.25 at an operating voltage of dV = 0.6V.

Fig. 6 Pareto front (left) and the set of weights used to obtain the Pareto

front (right) at operating condition of dV = 0.6V.

Fig. 7 Cathode design variable values for the design given by weight sets

1 to 4 at operating conditions of dV = 0.4, 0.6 and 0.8V.

Fig. 8 Cathode CL solid, void and electrolyte phase volume fractions for

the design given by weight sets 1 to 4 at operating conditions of

dV = 0.4, 0.6 and 0.8V.

Fig. 9 Anode design variable values for the design given by weight sets 1

to 4 at operating conditions of dV = 0.4, 0.6 and 0.8V.

Fig. 10 Anode CL solid, void and electrolyte phase volume fractions for

the design given by weight sets 1 to 4 at operating conditions of

dV = 0.4, 0.6 and 0.8V.
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Figure 1: Computational domain and initial grid used to solve the equations of
the MEA model.
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Figure 2: Polarization curves from experimental data and numerical data at
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Figure 6: Pareto front (left) and the set of weights used to obtain the Pareto
front (right) at operating condition of dV = 0.6V.
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Figure 7: Cathode design variable values for the design given by weight sets 1
to 4 at operating conditions of dV = 0.4, 0.6 and 0.8V.
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Figure 8: Cathode CL solid, void and electrolyte phase volume fractions for the
design given by weight sets 1 to 4 at operating conditions of dV = 0.4, 0.6 and
0.8V.
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Figure 9: Anode design variable values for the design given by weight sets 1 to
4 at operating conditions of dV = 0.4, 0.6 and 0.8V.
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Figure 10: Anode CL solid, void and electrolyte phase volume fractions for the
design given by weight sets 1 to 4 at operating conditions of dV = 0.4, 0.6 and
0.8V.
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