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Abstract

A fuel cell gradient-based optimization framework based on adaptive mesh refine-
ment and analytical sensitivities is presented. The proposed approach allows for effi-
cient and reliable multivariable optimization of fuel cell designs. A two-dimensional
single-phase cathode electrode model that accounts for voltage losses across the
electrolyte and solid phases and water and oxygen concentrations is implemented
using an adaptive finite element formulation. Using this model, a multivariable op-
timization problem is formulated in order to maximize the current density at a
given electrode voltage with respect to electrode composition parameters and the
optimization problem is solved using a gradient-based optimization algorithm. In
order to solve the optimization problem effectively using gradient-based optimiza-
tion algorithms, the analytical sensitivity equations of the model with respect to the
design variables are obtained. This approach reduces the necessary computational
time to obtain the gradients and improves significantly their accuracy when com-
pared to gradients obtained using numerical sensitivities. Optimization results show
a substantial increase in the fuel cell performance achieved by increasing platinum

loading and reaching a Nafion mass fraction around 20-30%wt. in the catalyst layer.
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1 Introduction

The design of proton exchange membrane fuel cells (PEMFCs) involves trade-
offs which can be difficult to quantify and balance due to the coupling of
a large number of complex transport phenomena. These phenomena, which
include fluid flow, heat and charge transport, and electrochemistry [1], are
controlled by a large number of variable parameters such as material prop-
erties, sizing of components and operating conditions. Numerical models can
provide valuable insight on the effect of these parameter variations on perfor-
mance [2-5] which are difficult to predict and often result in opposing effects.
For instance, increasing the size of the cathode gas distribution channel can
alleviate mass transport limitations but this is offset by increased ohmic losses
6], and the optimal size is in fact dependent on properties such as gas dif-
fusion layer porosity, permeability and conductivity. Optimal design requires

therefore simultaneous variation of all pertinent design parameters.

When only one or two design parameters are involved, optimization can be
achieved using parametric studies and graphical techniques. However, when
the number of design parameters increases, these techniques are not feasible
and numerical optimization methodologies are required. Numerical methods

for large scale optimal design, involving optimization of a large number of
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design variables, have been developed in other areas such as aerospace [7-9],
structural and engineering design [10,11]. These methods rely on analytical
sensitivity computations and gradient-based optimization algorithms. Opti-
mization studies in some areas of fuel cell design have started to appear in
recent years [12-16]. However, these methods are limited to optimization prob-
lems with a small number of design variables because the models used do not
provide sufficiently accurate sensitivities and the procedures were based on
either numerical sensitivities [13-15] or zero-order search methods which rely
excessively on computationally resources [12,16]. In this paper, a method to
obtain analytical sensitivities is presented and used to implement a numerical
model (programmed in C++) that solves the governing equations of the model

as well as the sensitivity equations.

The electrode in a PEMFC is a critical component from the view point of both
cost and performance and is therefore a good candidate for optimization. In
order to reduce fuel cell costs, the amount of platinum used in the catalyst
layers and, in particular, in the cathode catalyst layer, has to be minimized
and distributed effectively while maximizing the power density. With the ex-
ception of the recent work by Song et al. [17,18] where a one-dimensional
catalyst layer model was used in conjunction with numerical optimization,
most of the experimental or modeling work to date to optimize catalyst layer
and electrode compositions has been performed using either single variable
trial-and-error or parametric studies in conjunction with graphical methods.
These methods are only valid when the number of design parameters is one or
two, however, electrode design involves more than two design variables (e.g.
Pt loading distribution, porosity and Nafion volume fraction) and therefore,

numerical optimization is required to solve such problem.



A multivariable numerical optimization analysis coupled with a two-dimensional
cathode electrode model is presented in this paper. The model fully accounts
for voltage losses across the electrode and water and oxygen concentration in
the catalyst layer and gas diffusion layer, and is implemented using an adaptive
finite element formulation. Following a detailed discussion and validation of
the model in section 2, a multivariable optimization problem is formulated to
maximize the current density for a given electrode overpotential with respect
to electrode composition parameters and subject to physical constraints. In
order to solve the optimization problem effectively using gradient-based op-
timization algorithms, the analytical sensitivity equations of the model with
respect to gas diffusion layer (GDL) and catalyst layer (CL) design variables
are obtained. The optimization problem and the sensitivity equations are dis-
cussed in section 3 together with the validation of the analytical sensitivities
by comparing the analytical gradients to numerical gradients obtained using
forward differences. Finally, the validated model and sensitivities are coupled
to a gradient-based optimization algorithm and results are presented and an-

alyzed in setion 4.

2 Cathode Electrode Model

In this section, a two-dimensional mathematical model for a cathode electrode
representing a plane across the channel of a PEMFC is described. The model

is based on the following assumptions:

e The fuel cell operates at steady state and at constant temperature and
pressure.

e The cathode is fed by a binary mixture of oxygen and water vapor.



The gas diffusion layer (GDL) is composed of void space and carbon fibers.
The catalyst layer (CL) is formed of a mixture of carbon supported plat-
inum, ionomer membrane electrolyte (Nafion) and void space [18,19].

The transport of reactants from the gas channels to the CL occurs only by
diffusion of oxygen gas in water vapor and can be modeled by Fick’s first
law [2].

Once the oxygen arrives at the catalyst site, it has to dissolve into an in-
finitesimally thin layer of ionomer which covers the catalytic sites. This layer
is considered infinitesimal because there is no work to date that relates this
thickness to the amount of ionomer in the catalyst layer, therefore, it is a
simplification needed to pose the optimization problem.

The transport of protons takes place only through the electrolyte, i.e. the
Nafion, and it is governed by Ohm’s law.

The transport of electrons takes place only through the solid phase, i.e. the
carbon fibers in the GDL and the mixture of carbon supported platinum in

the catalyst layer, and it is governed by Ohm’s law.

2.1 Model equations

Using the above assumptions, the equations governing transport in the cathode

GDL and CL are written as

V- (nFctomlDf)ngxOQ) —-V-i=0

R(W,p) =1 V. (6¢/1V4,) —V-i=0 (1)

V.- (0d'Vps)+V-i=0



where the unknowns are the oxygen molar fraction z,,, the ionomer membrane
electrical potential ¢,, and the solid phase electrical potential ¢g. These equa-
tions are solved for both the GDL and CL domains and, therefore, the system
of equations fully coupled these domains. Furthermore, the physical properties
of the GDL and CL, oxygen diffusion coefficient, Dgf f. proton conductivity,
o/l and electron conductivity, agf / , are related to the material composition.
Similarly, the volumetric current density, V - i(Z,,, om, dg), is also dependent
on the catalyst layer composition. The appropriate relationships between these

coefficients and the cathode composition are described below and are based

on the work by Kulikovsky et al. [20], Song et al. [17] and Marr and Li [21].

The effective oxygen diffusion coefficient is computed using the Bruggeman
correction [17] to account for the effect of the porosity and conductive path

tortuosity and is given by

D§2ff—gdl = D027w<6€/€”)3/2 (2)

DT = Doy o(€7)*? (3)

where D&//=9% and Deff=< are the effective oxygen diffusion coefficients in the
GDL and CL respectively. In the GDL, e%dl represents the void space volume

fraction. This value is related to the GDL solid phase by,

et =1 (4)

In the CL, € represents the volume fraction of the catalyst layer occupied
by void space, i.e. the catalyst layer porosity. This value is related to the
cl

ionomer volume fraction , €4, i.e. the volume of catalyst layer occupied by the

polymer electrolyte (typically Nafion), and the solid phase volume fraction in



the catalyst layer, €4, by the equation
cl cl cl
ey teyt+eg=1 (5)

where the solid phase volume fraction in the catalyst layer is assumed to be
the volume fraction of the catalyst layer occupied by the carbon supporting
particles and catalyst particles. The volume fraction of the solid phase can be

obtained using [17,21]

1 1— %Pt mpt

cl
= —+ 6
s <th %Ptp. ) L (6)

The effective proton and electron conductivities in the catalyst layer, o¢// and

Ugf I in (1), are also obtained using Bruggeman correction and are thus

o7 = ap () (7)
o7 = og(ed)? (8)

A similar procedure is used to obtain the effective conductivities in the gas
diffusion layer, also known as the porous transport layer. In this layer only
solid phase and void space exist and therefore, the effective conductivity of

protons and electrons is

ol 17 = ol ()M = 0 (9)
o = g (") (10)

Note that since the catalyst layer and GDL consist of different materials, the
electronic conductivity, og, will also be different in each layer. This change in

properties has not been taken into account in most published work.



Finally, the volumetric current density in (1) is also affected by the catalyst
layer composition, since either a larger amount of catalytic particles or a larger
percentage of platinum per catalyst particle will yield larger volumetric cur-

rent densities. The volumetric current density is determined using the Tafel

equation
Nafion\ 7
c aF
V-i= A |2 ex < - > 11
vl ngf p RT (¢m ¢S> ( )
where cé\g afion represents the concentration of oxygen dissolved in Nafion at

the catalytic site and is given by

Nafion __ Ctotalxoz (12)
02
HOQ,N

and the dimensionless Henry’s law constant is obtained using

A~

H, n
H, oy = =2 13
2,IN RT ( )

where H,, v is taken to be 3.52611 x 10*£2™ [22],

The reference exchange current density, 74/ , in equation (11) is given in A/cm?

and it is a function of the fuel cell temperature in Kelvin [23]

Z-Sef — 103.507—4001/T (14>

The specific reaction surface area per volume of the catalyst layer, A,, is
dependent on the platinum loading mp;, the thickness of the catalyst layer L,

and the catalyst surface area per unit mass of the catalyst particle, Ay, [17,21]

A’U - AOT (15)

Finally, the catalyst surface area per unit mass of the catalyst particle, Ay, de-

pends on the platinum content of the catalytic particles. Using a least squares



fit to the data of Marr et al. [21], the following relation is obtained

Ag = 2.2779 x 10%(% Pt)* — 1.5857 x 10%(% Pt)?

—2.0153 x 10°% Pt + 1.5950 x 10° (16)

2.2 Boundary conditions

The two-dimensional model represents a cross-section of the cathode and in-
cludes the CL and GDL with appropriate boundary conditions for the membrane-
CL, gas channel-GDL and current collector-GDL interfaces. Taking advantage
of geometric symmetry, the computation domain includes only half of the gas
channel and half of the current collector, as shown in Figure 2.2. There are

four types of boundaries

e membrane at (z,y) = {z = 0,Vy};

symmetric boundaries at (z,y) = {Vz,y = 0 and 0.1em};

current collector at (z,y) = {Vz,y = [0,0.05]}; and

gas channel at (z,y) = {Vz,y = [0.05,0.1]}.

The boundary conditions at the membrane/electrode interface (segment A-E

in Figure 2.2) are set to [20,22]

n-Vz,, =0 (17)
n-Ves =0 (18)

where n is the surface normal and ¢q, or dV/, is the potential across the elec-

trode.
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Fig. 1. Computational domain and initial grid used to solve the equations of the

cathode electrode model

The boundary conditions along the symmetry boundaries (segments A-B and

D-E in Figure 2.2) are set to

n-Vi, =0 (20)
n- V¢S =0 (21)
n-Veo, =0 (22)

The boundary conditions at the rib or current collector/electrode interface

(segment B-C) reflect the fact that the cathode is taken as the reference po-
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tential and are set to

n- Vi, =0 (23)
¢s =0 (24)
n-Veo, =0 (25)

Finally, the boundary conditions at the gas channel/electrode interface (seg-

ment C-D) are set to

Loy = :E22 (26)
n-Veog =0 (27)
n- Ve, =0 (28)

where the oxygen concentration inside the pores at the GDL/gas channel
interface is taken as equal to the concentration of oxygen in the mixture inside

the gas channel.

2.8  Numerical validation

The model described in the previous section was discretized using an adaptive
finite element method and implemented using C++ and the deal.ii libraries
of finite element routines [24]. Note that the solution procedure fully couples
the GDL, cathode and sensitivity equations. The implementation of the model

and the optimization framework are discussed in detail in section 3.3.

In order to validate the model implementation, the results obtained from the
model were compared to the results of Kulikovsky et al. [20] who presented a

similar finite volume model. The main differences between the present model
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and that of reference [20] are: a) the use of Fick’s first law instead of the
Maxwell-Stefan equations, b) the assumption that oxygen has to dissolve in
the ionomer before it reacts (in Kulikovsky’s model oxygen reacts once it
reaches the catalyst site), and finally, ¢) the dependance of conductivities and
diffusion coefficients on electrode composition. The first difference is only nom-
inal since in Kulikovsky et al. [20] results are reported for a fuel cell cathode
feed consisting of only oxygen and water vapour. This is a binary mixture,
in which case Maxwell-Stefan equation and Fick’s first law are equivalent. To
eliminate the second difference, in this section we assume that oxygen reacts
without having to dissolve into the ionomer, i.e. we set Hp, v = 1. Finally, the
input parameters in reference [20] are the effective diffusion coefficients and
conductivities rather than the composition of the CL. and GDL. To perform
a proper comparison, the values reported by Kulikovsky et al. are directly
employed in our model to generate the results in this section. These values are
given in Table 1. Finally, the conductivity of the ionomer phase was obtained
by curve fitting the results by Kulikovsky et al. since a value for this variable
was not reported in [20]. In order to validate the model, numerical solutions
were obtained to generate polarization curves for two effective electronic con-
ductivities for both GDL and CL, 0&// = 0.53S/em and ¢&// = 40S/em. For
each conductivity, the numerical model was simulated at different overpoten-
tials in order to obtain the current density of the fuel cell. The current density
was obtained during postprocessing, as described in detail in Section 3. All
solutions were obtained using adaptive refinement. This particular powerful
feature of the numerical method ensured grid independent solutions at a min-
imum computational cost and provides solutions with changes on the current
density of less than 1% between the last grid levels. The polarization curves

shown in Figure 2 are essentially identical to those of Kulikovsky et al. with
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Table 1

Data used to model the catalyst layer [20]

Geometry
thickness GDL, [cm)] 1.0 x 1072 thickness cat, [cm] 1.0 x 1073
thickness channel, [cm] 0.1 thickness rib, [cm] 0.1

Operating conditions

p, [atm] 2 T [K] 383
Zoy 0.5 Ty 0.0
T 0.5

Physical properties

D=9 em2 . 571 2514 x 1072 DT [em? - s7Y] 6.478 x 1073

Ho, n, [P 1

oill 1S em™] ~0.04 oS emY 0.53-40
« 2 0% 0.5

n 4

it JA - em™] 1.0x 105 & [mol-em™3] 318 x 1070
ppi, [g - em™] 215 pes lg-em™?) 2.0
PN g - em™? 2.0
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Polarization Curve of the Catalyst Layer
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Fig. 2. Comparison between the polarization curves reported in Kulikovsky et al.

[20] (circles) and our model’s polarization curves (squares)

minor differences likely due to the different numerical technique.

2.4 Input parameters for optimization

The initial input parameters used for optimization are provided in Table 2.
These geometric and physical parameters were obtained from either published
data or manufacturer’s data. The values for the geometry of the electrode
are taken from [20,17]. The operating temperature and pressure are similar to
other values reported in the literature such as the operating values in [25] and
[20]. Similarly, the relative humidity is set to 75% which is also a representative

value of a real fuel cell system and similar to the relative humidity values
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used by Kulikovsky et al. [20]. This value in conjunction with the saturation
pressure curve is used in order to obtain the appropriate molar fractions of

oxygen and water.

The physical parameters are also obtained from the literature. The electrolyte
conductivity is obtained using the equations provided in [26] for the given
temperature and relative humidity. The gas diffusion layer conductivity is
obtained assuming a GDL porosity of 80% and an effective resistivity of 40mS2-
cm and by substituting these values into equation (10) to obtain Ugdl. The
GDL porosity is in the range of the porosity values reported in [27] and for the
Toray Carbon Fiber paper. The resistivity values are in the range 6-80mf2-cm
reported for the through-plane and in-plane resistivities for the TGP-H Toray
Carbon Fiber paper and in-plane values reported in [27]. It should be noted
that the resistivity of the GDL is anisotropic and this should be taken into
account in the future. The CL conductivity is obtained by curve fitting the
conductivities reported in [28] for Vulcan XC-72 carbon black, commonly used
as the carbon supporting the catalyst particles, at different packing values, i.e.
the ratio of the volume of the carbon black particles including their micropores
and the volume available of the carbon sample. The diffusion coefficient of
oxygen in water vapour is obtained from Chapman-Enskog theory as discussed

in [29]. The value of Henry’s law constant used was reported in [22].

The catalyst layer reaction kinetic parameters, «, v, n and cgsf , the initial
catalyst layer composition parameters ey, %Pt and mp; and the densities
of Platinum, carbon black and electrolyte are all obtained from the values

reported in [17].
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Table 2

Initial data used to optimize the catalyst layer

Geometry
thickness GDL, [cm] 1.0 x 1072 thickness cat, [cm] 1.18 x 1073
thickness channel, [cm] 0.1 thickness rib, [cm] 0.1

Operating conditions

p, [atm] 2 T, [K] 363

Toy, ] 0.74068 T, [ 0.25932

Physical properties

Om, [S - em™1] 0.06 (75%RH)

o9 1S - em™! 279.5 od, 18- em™] 32.64
Doy, [em? - s71] 0.1475 Ho, v, [Bem?] 3.52611 x 10*
o 1 0% 1

n 4 el Imol - em ™3] 1.2 x 1076
en, [ 0.3 I 0.8
%Pt, [-] 0.2 mpy, [g-em™2] 3.32 x 1074
pp, [g-cm ™7 21.5 Pes g - em™] 2.0

PN, [g - em™3] 2.0
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3 The Optimization Problem and Sensitivity Analysis

A good overall measure of fuel cell performance is current density at a given
potential. Therefore, if the goal is to optimize fuel cell performance at a given
operating point, i.e. cell voltage, it is necessary to find the optimal catalyst
layer and GDL composition that produces the maximum current density. In
the model described above, the catalyst layer composition is described by three
design parameters: the Nafion volume fraction, €5, the platinum loading, mp;
and the mass percentage of platinum catalyst on the support carbon black,
%Pt. The CL solid volume fraction was obtained from the last two parameters.
The GDL composition is described by the porosity or void volume fraction,
gdl

ey . Given this parameter, the solid phase volume fraction is readily obtained

from equation (4).

3.1 The optimization problem

The optimization problem is formulated as

maximize (¢ = dV = V) (29a)
w.r.t. €, mpy, %oPt, el (29Db)
subject to: 0 < ey < 1 (29¢)
0<es <1 (29d)
0<ey<l1 (29¢)

where the constraints guarantee that the volume fraction of each one of the
three phases on the catalyst layer is not negative or larger than one. Further-

more, equation (5) is always satisfied by the way the void fraction is obtained.
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Table 3
Initial upper and lower bounds for the design parameters used to optimize the

catalyst layer

Design variable Upper bound Lower bound

¢ 0.9 0.1
mpt 2x 1073 1x1074
%Pt 0.9 0.1
e 0.9 0.1

Finally, bounds are also set on each one of the design variables. The design
variable bounds are shown in Table 3. The most important bound is the upper
bound for the Platinum loading, which is constrained by cost. In this case, this
value is set to 2 x 1073 which is more than two times higher than currently
used platinum loadings [30]. If this upper value is increased, this might change
the optimal solution. Indeed, for an upper limit of 5 x 1073 a new optimal so-
lution appears at mp; = 5 x 1072 and %Pt = 0.9, however, this represents an

excessive Platinum loading.

3.2 Analytical sensitivities

In the optimization problem above, the objective function is given by the fuel
cell current density at a given electrode voltage. Current density is not one of
the unknowns solved for by the analysis program, rather, it is obtained during

postprocessing. The current density per unit area of a fuel cell can be obtained
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by integrating the volumetric current density over the volume of CL,

f(u p) (x027¢57¢m7mPt7%Pt €N,€€/dd H/ / V. ldﬁdy (30)

where V -1 is given in equation (11), H is the height of the domain and L
is the width of the domain, i.e. the thickness of the CL. Furthermore, the
constraint equations in the optimization problem in (29) are directly given by
the analysis model. Hence, no extra computations are required to determine

the constraints.

The analytical sensitivities of the objective function f, with respect to any of

the design variables p;, can be obtained using functional analysis as

df(w,p) _ 0f(w,p)du;  9f(u,p)
dp; 5%’ Op; Op;

(V-i)ou; 0(V -i)
H/ / < ou; p¢+ o, )dxdy (31)

where u is the vector of unknowns solved for by the analysis program, p is

the vector of design parameters, ¢ = 1,...,3, 7 = 1,...,4, a(azi) and 8(6;”

are obtained by analytical differentiation of equation (11) with respect to the

solution vector and the design variables respectively and, finally, the term

g;? is unknown and represents the change of the solution vector with respect

to the design variables. This vector can be obtained by noticing that the
residual of the governing equations has to be zero at the solution and that any
perturbation in the parameters of the system should result in no variation on

the residual if the residual is to be satisfied. Therefore, the total derivative of

the residual has to be zero. Then, gizj is computed by solving the system of

partial differential equations given by

OR(u,p)0u;  OR(u,p)

auj ap,- N 8pi <32>
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ou; L .
%%}j and %}‘:_’p) represent the derivatives of the governing equa-
J v 7

where
tions in (1) with respect to the solution vector and the design variables re-

OR(u,p) Ou;
Ou;  Op;

spectively. These are obtained using functional analysis. Note that
is a directional derivative and therefore results in a differential equation with
the vector % as the unknown [31,32]. Once an analytical expression for these
terms is obtained, the system of PDEs is discretized using the finite element
method with appropriate boundary conditions. In this case, the boundary con-
ditions for the unknown vector % are Newmann boundary conditions with
value set to zero. After discretization and application of the boundary condi-
tion, the resulting linear systemis solved using the GMRES method with an
ILU preconditioner. The terms %;,p) and %‘;’p) depend on the solution of
the governing equations and therefore this system of equations can only be
solved after solving the governing equations as shown in figure 3. Finally, note
that this system is has the same size than the original linearized system of
governing equations and that it needs to be solved for each design variable
p;. This method of obtaining the analytical sensitivities is the so-called direct
formulation chosen here instead of the adjoint formulation because of its ease
of implementation. A similar approach to compute sensitivities was also used
in reference [33] to solve a least squares problem to estimate fuel cell model pa-

rameters from experimental data. As the number of design variables increases

the adjoint formulation is proven to become more efficient [34].

Once the analytical sensitivities were implemented in the code, they were
validated by comparing them to the numerical sensitivities computed using
forward differences. Table 4 shows the results from the validations, performed
using the data from Table 2 and with dV = 0.3V. The calculations were

performed using adaptive mesh refinement until the change in the computed
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current density between two consecutive grid refinements was less than 1%. In
most cases, the final grid had 1,665 degrees of freedom, i.e. 555 nodal points.
Furthermore, to ensure that the results were grid independent, the current
density was also computed until the error was less than 0.1% between two
consecutive grid refinements (this involved solving the problem with a grid
consisting of 10,908 dof) and the difference between the two current densities
was of less than 0.4%. Furthermore, the difference in all components of the
gradient was less than 2%. It is important to mention that the number of
degrees of freedom in the final grid is not specified and depends only on the
successive refinement and coarsening to achieve the desired accuracy on the
current density. The solution method used to solve the equations is discussed

more comprehensively in section 3.3.

Table 4 shows good agreement between analytical and numerical sensitivities.
Furthermore, this table also shows the well known problem of using numerical
sensitivities, i.e. the dependence of numerical sensitivities on the step size. In
this case, we observe that the numerical gradients of all variables are dependent
on the step size and that gradients are only accurate for step sizes in the
range 107°-1071%. It is also noticed that the optimal step size is dependent
on the design variables. For ey, %Pt and ei’,dl the optimal step size is around
10~7 — 1078 but for mp; the optimal step size is around 107!, This is most
likely due to the value of the design variable being smaller. In any case, this

demonstrates the clear advantage of relying on analytic sensitivities.
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Table 4

Analytical vs numerical sensitivities

Design Analytical Numerical Numerical Numerical
variable (6h =1079) (6h =1079) (6h=10"7)
e 4.86120 x 1071 4.86110 x 107! 4.86119 x 10~} 4.86120 x 10~*
mpy 8.09674 x 102 7.91303 x 102 8.08947 x 10? 8.09602 x 102
%Pt —5.47604 x 1071 —5.47615 x 107! —5.47605 x 107! —5.47604 x 101
I —4.87682 x 1072 —4.87713 x 1072 —4.87684 x 1072 —4.87682 x 102
Design Numerical Numerical Numerical Numerical
variable (6h =107%) (6h =1077) (6h =10710) (6h =10712)
% 4.86120 x 107! 4.86123 x 107! 4.86153 x 107! 4.94588 x 10~!
mpy 8.09667 x 102 8.09673 x 102 8.09674 x 10? 8.09682 x 102
%Pt —5.47604 x 1071 —5.47603 x 10~!  —5.47501 x 10~!  —5.50516 x 107!
o —4.87678 x 1072 —4.87639 x 1072 —4.87155 x 1072 —4.27445 x 1072

3.3 Implementation of the optimization program

The electrode finite element model together with the analytical sensitivities of
the objective function and constraints are coupled to an optimization package
(DOT [35]), as shown in Figure 3. In this figure, the three main iterative
loops can be identified. The inner loop, the analysis loop, is used to solve
the nonlinear governing equations. The middle loop, the adaptive refinement

loop, is used to check the accuracy of the solution and adapt the computational
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mesh as necessary using an a-posteriori error estimator. The outer loop, the
optimization loop, is used to change the design parameters in order to obtain

an improved design. The analysis loop starts by solving the system of nonlinear

Initial Design
Design Generator

Grid Generator

Solve Linearized Model

> 0R(",p) n
Téu =-R(u",p)

v

Update Nonlinear Solution
u"t =" + bu

Convergence of
nonlinear model?

YES

Compute analytical sensitiviti

o (E)B(u,p) )" OR(u,p)

o Ou dp

¥

Compute objective function (),
constraints and sensitivities
df(u,p) _ Of(u,p) du  Of (u,p)

dp du  Op p

NO

Convergence to
desired accuracy?

YES
Gradient-Based
Optimization

Convergence to
optimal design?

YES

Fig. 3. Implementation of the multivariable optimization framework with adaptive

refinement and analytical sensitivities

PDEs in (1) on the coarsest grid using Newton’s method [36]. This method
yields a quadratic rate of convergence if the initial estimate is sufficiently close
to the solution and therefore, provides an efficient method to solve the system.

In this case, the initial guess of the solution is constant field for each variable.

23



At each Newton iteration, a linearization of the system of equations given in

(1)
OR;(u,p)
(?uj

is solved to obtain a solution update, du = {0x,,, §¢,, dps}T. Once this system

Su; = —Ri(u,p) (33)

is solved, the initial solution is updated using u™*! = u™ + du. This process
is repeated until the solution satisfies the nonlinear governing equations and

the update becomes nil. The convergence criteria for the Newton loop is

n+l _ ;n
Jo™ ) s (34)
[[uf
where the residual R(u,p) is also evaluated after convergence to guarantee

that a true solution is obtained.

The system of equations in (33) is still a linear PDE and therefore a method to
solve PDEs is necessary. In order to solve this PDE, the finite element method
is used. The system is discretized using a Galerkin formulation and first or-
der Lagrange finite elements [37]. After discretization, the system of equations
yields a non-symmetric linear system of equations. This linear system is solved
using an iterative solver. In particular, the generalized method of minimum
residuals (GMRES) is used in conjunction with an incomplete LU decompo-
sition (ILU) preconditioner [24,38]. Using this solver and the preconditioner,
the linear system is solved at each iteration until the residual is smaller than
107, The solution of this linear system provides the update of the solution

for the next step.

The adaptive refinement loop is used in order to refine the mesh automatically
during the solution process where the largest numerical errors are predicted.
This allows the solver to provide always a grid independent solution even

though the design parameters and therefore, the physics of the problem are
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changing. Furthermore, because refinement occurs only where the errors are
largest, grid adaptivity reduces computational cost by refining the grid only

where necessary.

In the adaptive refinement loop, the error estimator in each cell used to decide
which areas must be refined is obtained using the a posteriori error estimator

developed by Kelly et al. in [39]

h
24 Jok

8uh

[ah(x)an] dA (35)

Ny =

and implemented in deal.ii [24]. In this case, 0K is the cell boundary, n is the
normal to the cell, u;, the components of the solution, and a; the coefficient
of the original equation, in this case, {nFciu DI, ot/ Jgf ! }. The error es-
timator is computed for each cell at each adaptive refinement and the 30% of
cells with the highest error are refined by dividing them into four cells while
the 3% of cell with the smallest error estimation are coarsened by merging four
neighboring cells. This loop is terminated when a grid independent solution
is achieved. In this case, adaptive refinement is stopped when the change on

the electrode current density as computed in equation (30) does not change

by more than 1% in two consecutive iterations.

Finally, at the optimization loop, once the objective function, constraints and
their analytical sensitivities are computed, these values are passed on to the
optimization algorithms implemented in DOT, which in this case can either
be a sequential quadratic programming, sequential linear programming or the
modified method of feasible directions [10,35]. The optimization algorithm uses
the objective function, constraints and their gradients or sensitivities to change
the design parameters to achieve better performance. These parameters are

passed back to the model and the process is repeated starting at the analysis
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loop. Convergence of the optimization algorithm is achieved if either

f(u7 pk+1> - f<u7 pk)

<1076 36
f(u7 pk) ( )
in four consecutive iterations or

d; <0.0001 Vi=1,...,n (37)

Finally, to avoid runaway processes, an upper limit of 250 iterations was set.
In the equations above, f(u, p;) represents the objective function at optimiza-
tion iteration ¢ and d; is the change on the design variable ¢ at the current

optimization iteration.

The optimization framework described was implemented using the C++4 pro-

gramming language and the results are discussed next.

4 Optimization Results

In order to obtain an optimal cathode electrode design, the prescription of an
initial design is required to begin the optimization process. In this case, the
initial input parameters used for optimization are provided in Table 2, and
the optimization is performed for a voltage drop of 0.3V at the electrode. For
this potential drop, an initial cell current density of 0.380784A4/cm? was ob-
tained and the non-dimensinal gradient of the current density with respect to
the four optimization parameters was Vi = {0.145836, 0.268812, —0.109521,
—0.039015}. The non-dimensinal gradient is used to better compare the rela-
tive sensitivity of the parameters because of the different magnitude of some
of the design parameters. The non-dimensional gradient is obtained by multi-

plying each component by the value of the parameter at the point where the
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derivative was computed, for example

di di
= mpt (38)

det Non—dimensional det Dimensional

Figure 4 shows the initial and final grid after adaptive refinement. Figure 5
shows contour plots of oxygen molar fraction and solid phase potential in the
GDL and Figure 6 shows contour plots of oxygen molar fraction, solid and
electrolyte potentials and volumetric current densities at the cathode catalyst

layer for the non-optimized cell.

The optimization problems presented in sections 4.1 and 4.2 were all solved
using the three optimization algorithms: the modified method of feasible di-
rections, the sequential linear programming and the sequential quadratic pro-
gramming algorithms described in [10,35]. The modified method of feasible
directions (MMFD) proved to be the most robust algorithm and gave the
most accurate solution in all cases. The sequential quadratic programming al-
gorithm was not sufficiently robust, and in most cases it stopped prematurely.
The sequential linear programming algorithm proved to be more robust, but
this algorithm was the most expensive computationally and it reached the
maximum number of iterations in all cases. The optimization results reported

in this section were thus preformed using the MMFD.

4.1 Catalyst layer optimization

In this section, the optimization problem in equation (29) was solved for the
catalyst layer parameters only, i.e. only with €5, mp; and % Pt as design vari-
ables. The data used for the optimization problem is the data given in Table

2. Furthermore, the initial value of the design variables is set to the values
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Fig. 4. Mesh used to solve the cathode electrode for the initial set of parameters. a)
initial mesh, b) mesh after adaptive refinement
given in Table 2 and the GDL porosity is kept constant during optimization

and it is also set equal to the value in Table 2.

The optimization problem was solved on a single AMD Opteron 64-bit CPU
and a converged optimal solution obtained after 11 minutes. To achieve the
optimum solution, the optimization algorithm needed 58 iterations and 239
function evaluations. Figure 7 shows the evolution of the objective function as
well as the evolution of each of the design variables. The algorithm approaches
the optimum solution very quickly in the first few iterations, but then it takes a
relatively large number of iterations before achieving full convergence. This is
due to the nonlinearity of the objective function as well as a strict convergence
criteria imposed in order to guarantee that the gradient of the solution is

close to zero. Figure 8 illustrates the nonlinearity of the objective function by
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Fig. 5. Contour lines for the initial gas diffusion layer at dV = 0.3V for (a) oxygen
molar fraction [-], (b) potential in the solid phase [V]

plotting the design space around the optimal solution for €5 and mp; and with
%Pt fixed at the optimum solution. The objective function has a banana like
shape with steep gradients in one direction but smaller ones in the other. This
type of function is known to be problematic for optimization algorithms [10].
At the end of the optimization, an optimum catalyst layer design is achieved
that has all design variables inside the bounds specified in Table 3 and that
satisfies all specified constraints. Furthermore, the non-dimensional gradient of
the objective function is V,i = {—1.1195e — 03, —9.9265¢ — 04, 2.3270e — 03}.
This value is two orders of magnitude smaller than the original gradient and

it is close to zero confirming that the solution is an optimal solution.

Gradient-based optimization algorithms ensure a local optimum, but do not

guarantee a global one. To verify that the optimized catalyst layer corresponds
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Fig. 6. Contour lines for the initial catalyst layer at dV = 0.3V for (a) oxygen molar
fraction [-], (b) potential in the solid phase [V], (c) potential in the electrolyte [V]

and (d) volumetric current density [A/em?]

to a global optimum, several initial points were used to start the optimiza-
tion process. Representative solutions obtained starting from two other ini-
tial designs are discussed here: p; = {€&, mp;, %Pt} = {0.75,1073,0.8} and
p2 = {0.1,107%,0.8}. In both cases, the same solution was obtained as show
in Table 5. This indicates that the solution is most likely a global solution.
Finally, several parametric studies such as the one shown in figure 8 with vary-
ing size domains were also performed. These studies also suggest a uni-modal
objective function. Compared to the initial catalyst layer design, the optimal
design yields over 50% increase in current density from 0.380784A/cm? to
0.575431A/cm?. This increase is a result of a reduction in the void volume

fraction from 0.12420 to 0.024602, and of the increase in both platinum load-
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Fig. 7. Optimization history for the catalyst layer optimization process using MMFD

Table 5

Optimal catalyst layer obtained using the three different initial designs

Initial design i eﬁ\l, mpy %Pt

Po 0.575431 0.365298 1.16508 x 10~2  0.466677
pP1 0.575432 0.364891 1.16641 x 10~2  0.466806
P2 0.575432 0.364800 1.16876 x 10~2 0.467319

ing and Nafion content. An optimal volume fraction of Nafion of 0.365298, i.e.
25.39 %wt. is in accordance with previous numerical [17] and experimental
work [40]. Sasikumar et al. [40] showed experimentally that using an electrode
with 20% Pt/C catalyst supports and a platinum loading of 0.5mg/cm? and

0.25mg/cm? the optimal Nafion content was 20% and 40% respectively. To
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Fig. 8. Two-dimensional visualization of the objective function near the optimum
solution with respect to ef\l, and mp;. %Pt is set to the optimum value 0.467. The

cross marks the optimal design point

further validate the results, optimization was performed setting the catalyst
supports to 20% Pt/C, and optimization was performed for only mp; and €%.
The results show an optimum value of {e5%, mp;} = {0.336196,3.70137¢ — 4}
which is equivalent to a 31.463 %wt. of Nafion and 0.370137mg/cm? of plat-
inum, which is again consistent with the experimental results by Sasikumar
et al. [40]. In this case, because the optimization problem only involves two
design variables the current density increases only by 11% to 0.423415A/cm?,

therefore, illustrating the benefits of multi-parameter optimization.

Figure 9 shows the oxygen molar fraction and the potential in the solid phase

of the electrode at the GDL for the optimal electrode. The oxygen distribution
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pattern remains similar (cf. Fig 5) but the molar fractions are smaller consis-
tent with the increase in current density. The solid potential distribution is
also similar with changes only in the y direction, and again, an increase in the

potential associated with the increase in current density.

Figure 10 shows oxygen molar fraction, solid and electrolyte potentials and
volumetric current density for the optimal catalyst layer. Compared to the
initial design, we note that even though the void fraction has been reduced
substantially in this layer, i.e. from 0.1 to 0.025, the oxygen molar fraction
is sufficient for the reaction everywhere. However, the oxygen distribution is
changed substantially from an essentially one-dimensional distribution (in the
y direction) in the initial design to a more complex two-dimensional distribu-

tion particularly under the current collector and area.

The solid and electrolyte phase potentials show a similar behaviour to the one
shown by the initial design with the solid phase changing in the y direction
and the electrolyte changing mainly in the z direction. However, in both cases,
even though both electrolyte and solid phase potentials have increased, the
gradients in these layers increase due to the higher current density. Finally, the
volumetric current density increases substantially everywhere in the catalyst
layer. However, this increase is not even and is higher near the membrane
interface, resulting in larger gradients of the volumetric current density in the

x direction.
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Fig. 9. Contour lines at the electrode for the optimal (MMDF) catalyst layer at

dV = 0.3V for (a) oxygen molar fraction [-], (b) potential in the solid phase [V]

4.2 Catalyst layer and gas diffusion layer optimization

In the preceding case, we considered optimization of the CL only. We now
consider the simultaneous optimization of both CL. and GDL. In particular,
the optimization problem in equation (29) is solved for the catalyst layer

cl gdl

parameters, i.e. €5, mp; and %Pt, and the gas diffusion layer parameter, €}, .

The data used for the optimization problem is the data given in 2.

The optimal solution problem is obtained in 10 minutes in a single AMD
Opteron 64-bit CPU after 43 iterations and 185 function evaluations. It is
interesting to note that the number of iterations is lower than in the previous
case even though a new design variable has been added. Figure 11 shows the

evolution of the objective function as well as the evolution of each of the design
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Fig. 10. Contour lines at the catalyst layer for the optimal (MMDF) catalyst layer
at dV = 0.3V for (a) oxygen molar fraction [-], (b) potential in the solid phase [V],

(c) potential in the electrolyte [V] and (d) volumetric current density [A/cm?]

variables. The catalyst layer design variables reach a similar solution to the
previous case and the GDL porosity is reduced from 80% to approximately
60%. At the optimum electrode design, the current density is 0.582825A4 /cm?
which represents a substantial increase with respect to the original current den-
sity 0.380784A/cm? but only a slight increase with respect to the catalyst layer
optimum design, 0.575431A4/cm?. The gradient of the objective function in the
optimal solution is small, V,i = {3.5533e — 03, 4.1798¢ — 03, —5.9847¢ — 03,
—1.3133¢ — 03} again demonstrating that the solution is indeed an optimal
solution consistent with all constraints. As in the previous section, to check
that the solution is a global optimum, the problem was solved starting from

2 additional initial designs: p; = {€%, mpy, %Pt, €2} = {0.75,1073,0.8,0.2}
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Fig. 11. Optimization history plot for the catalyst layer and GDL optimization

process using MMFD
and py = {0.1,107%,0.8,0.5}. The solutions are listed in Table 2 are shown in

Table 6. As in the previous case, the same solution is obtained from all three
initial designs with only negligible differences that could be further reduced

by using a more stringent convergence criteria. A comparison of the solution
Table 6

Optimal catalyst layer obtained using the three different initial designs

gdl
&

Initial design i ef\l, mpy %Pt

0.582825 0.365057 1.16335 x 1073 0.466330 0.626133

Po
P1 0.582831 0.364898 1.16534 x 1073  0.466650 0.614249
P2 0.582731 0.364538 1.18691 x 1073 0.471506 0.597430

from the catalyst layer optimization in Table 5 and the solution from the elec-
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trode optimization in Table 6 shows that the catalyst layer design variables
remain almost unchanged when the GDL porosity is introduced into the opti-
mization, while the GDL porosity is reduced from 80% to 60%. The relatively
small improvement in current density by adding the GDL design parameter
into the optimization and the small changes in catalyst layer composition are
not unexpected in this case because the reaction in the CL is not transport
limited. This makes the coupling between the GDL and the catalyst layer less
important and, therefore, not much improvement is achieved by adding the

GDL parameter into the optimization process.

Figure 12 shows the oxygen molar fraction and solid phase potential at the op-
timum electrode. Because the porosity is decreased, the potential at the solid
phase is reduced, reducing also voltage losses at the GDL. Meanwhile, the
mass transfer is also slightly decreased, however, this does not affect substan-
tially the reaction because there is always sufficient oxygen for the reaction.
Figure 13 shows the effects of the GDL optimization on the catalyst oxygen
molar fraction, solid and electrolyte phases and reaction rate. The effect is
similar to that in the GDL. Because of the drop in the oxygen molar fraction
in the GDL, the oxygen molar fraction is also slightly reduced at the catalyst
layer. Similarly, the decrease in solid potential at the GDL results in a reduc-
tion of the solid potential in the catalyst layer. This last value increases the
overpotential at the CL which in turn increases the volumetric current density
slightly. This increase is larger under the gas channel where the solid potential
has been reduced the most. Finally, the electrolyte potential remains almost

constant, with a small increase due to the higher current density.
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Fig. 12. Contour lines at the electrode for the optimal (MMDF) electrode at

dV = 0.3V for (a) oxygen molar fraction [-], (b) potential in the solid phase [V]

4.3 Qwerall performance of the optimized cathode electrode

The optimization of the cathode electrode has been performed at a given volt-
age drop of 0.3V. There is not a guarantee that the performance improvements
obtained by optimizing the design at this overpotential will also be achieved
over the entire polarization curve. To conclude the study, the polarization
curves corresponding to the initial and optimal designs are plotted in Figure
14. Only low to intermediate currents are considered since two-phase flow is
not taken into account in this model and the effect of liquid water satura-
tion can become important at high current densities [3]. For an overpotential

of 0.3V at which the optimization was performed, the water molar fraction
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Fig. 13. Contour lines at the catalyst layer for the optimal (MMDF) electrode at
dV = 0.3V for (a) oxygen molar fraction [-], (b) potential in the solid phase [V], (c)

potential in the electrolyte [V] and (d) volumetric current density [A/em3]

reaches a maximum value of 0.325 under the current collector at the mem-
brane/catalyst layer interface. This value is close to the value of 0.346 at which
saturation can occur at the cell operating conditions. The polarization curve
of the improved design shows indeed an improvement over the initial design
over the entire range of pertinent current densities, and not only at the given

design voltage of 0.3V
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5 Conclusions

In this paper, a numerical optimization framework able to perform system-
atic PEM fuel cell cathode design has been presented. In order to develop the
framework, a gradient-based optimization algorithm has been coupled with
a two-dimensional PEM fuel cell cathode model. This framework represents
the first documented attempt to perform numerical optimization of a cathode
electrode using a two-dimensional model. The model is used to compute elec-
trode current density and its analytical sensitivities with respect to cathode
design parameters. The electrode current density is then used as the objective

of the cathode optimization problem.

In order to achieve the maximum current density, the framework was used to

obtain the optimum CL and GDL compositions. Optimization results show
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that, by optimizing the catalyst layer composition, the current density can be
increased by more than 50%. This increase is due to a substantial reduction
in porosity, from 0.12420 to 0.024602, and an increase of both platinum mass
loading and ionomer volume fraction. In order to ensure that there is enough
porosity in the catalyst layer and, at the same time, to be able to increase
platinum loading to the desired amount, the percentage of platinum per car-
bon black is increased with respect to the initial design. Another finding of
note is that, at low current densities when mass transport is not limiting,
introducing the gas diffusion layer composition to the optimization problem
does not significantly affect the optimal catalyst layer design, and only small

improvements in fuel cell performance are obtained.

The optimization results also demonstrate that this framework is capable of
producing optimal cathode compositions using only a small amount of com-
putational resources; less than 15 minutes of computational time on a single
processor. This computational efficiency is due to the use of Newton’s method
to solve the nonlinear governing equations and the use of analytical sensi-
tivities during optimization. The cathode model presented in this paper is
restricted to two-dimensions; however, results suggest that the same numeri-
cal optimization methodology could be extended to perform three-dimensional
multi-parameter fuel cell optimization also requiring only a reasonable amount

of computational resources.
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edged.

Nomenclature

%Pt mass percentage of platinum catalyst on the support carbon black

a transfer coefficient [-]

€€ void volume fraction in the catalyst layer [-]

e void volume fraction in the GDL [-]
€& Nafion volume fraction in the catalyst layer [-]
€4 solid phase volume fraction in the catalyst layer [-]

e void volume fraction in the catalyst layer [-]

2" solid phase volume fraction in the GDL [-]
v coefficient in Tafel equation [-]
H,, ., Henry’s law coefficient for the oxygen in Nafion [P#;’f]

¢m  membrane potential [V]
Os solid phase potential [V]
Pe Carbon density [g - em™]

pp:  Platinum density [g - em ™3]

oc¢lT=9dl effective electrolyte conductivity in the GDL [S - em™]
o794 offective solid phase conductivity in the GDL [S - em™!]
o¢lT= effective electrolyte conductivity in the catalyst layer [S - cm™!]
agf I~ effective solid phase conductivity in the catalyst layer [S - cm™!]

o¢ll effective electrolyte conductivity in either the GDL or the CL [S-em™!]
o¢!l effective solid phase conductivity in either the GDL or the CL [S-cm™!]

Ay catalyst surface area per unit mass of the catalyst particles [cm?/g]

A,  specific reaction surface area per volume of catalyst layer [1/cm)]

CNafzon

-~ concentration of oxygen dissolved in the Nafion [mol - cm ™3]
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crel concentration of oxygen [mol - cm™?]

Ciotal  CcONcentration of the binary mixture of oxygen and water vapour [mol -
em ™3

DT effective diffusion coefficient in either the GDL or the CL [cm? - s71]

D,, ., oxygen diffusion coefficient in water vapour [cm? - s7!]

Dg’;‘ F=¢l effective oxygen diffusion coefficient in the catalyst layer [em? - s71]

Defi=adl effective oxygen diffusion coefficient in the GDL [em? - s71]

dV applied voltage to the electrolyte [V]

F Faraday constant, 96493 [C' - mol]

i current density, [A/cm™?]

in’ exchange current density, [A/cm 2]

L length of the catalyst layer [cm]

mp; catalyst platinum mass loading per unit area on the catalyst [g - cm™2]

n electrons produced in the cathodic reaction

P pressure of the binary mixture [Pa]

Do, ~ OXygen partial pressure [Pa]

R gas constant, 8.315 [J - K~ - mol™!]

T temperature [K]

To,  OXygen molar fraction [-]
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